Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:23:48.072Z Has data issue: false hasContentIssue false

Formation of spinel-cordierite-plagioclase symplectites replacing andalusite in metapelitic migmatites of the Alvand aureole, Iran

Published online by Cambridge University Press:  22 October 2010

A. SAKI*
Affiliation:
Department of Geology, Faculty of Science, Shahid Chamran University, Ahvaz, 65355-141, Iran

Abstract

Spinel–cordierite–plagioclase symplectites partially replacing andalusite occur in the metapelitic migmatite rocks of the Alvand aureole within the Sanandaj–Sirjan metamorphic belt, Hamadan, Iran. The presence of melt shows that corona development occurred under partial melting conditions. Spinel is predicted to grow with cordierite at around 700°C. Exhaustion of the available SiO2 and/or separation of sillimanite/andalusite from SiO2-rich matrix domains by cordierite resulted in the formation of localized low-silica activity domains and thus triggered the growth of spinel in the rim of andalusite, the reaction Sil/And + Bt = Crd + Spl + Kfs + melt, as the most common reaction for the development of coronas in the metapelitic of Alvand aureole. The breakdown of garnet to plagioclase + sillimanite, dehydration melting and the formation of spinel–plagioclase symplectite could occur during heating or decompression; these textures are limited to the contact aureole in the studied area, so heating is perhaps the more likely explanation for formation of the symplectites in the metapelitic rocks of the Alvand aureole. The P–T diagram, inferred paths and zoning profiles of garnet do not account for the decompression history of the terrane.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, P., Omrani, J., Joliver, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–19.CrossRefGoogle Scholar
Ahmadi, A. A., Esmaeily, D., Valizadeh, M. V. & Rahimpour-Bonab, H. 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 29, 859–77.Google Scholar
Alavi, M. 1994. Tectonics of the Zagros Orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Arvin, M., Pan, Y., Dargahi, S., Malekzadeh, A. & Babaei, A. 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implication for initiation of Neotethys subduction. Journal of Asian Earth Sciences 30, 474–89.CrossRefGoogle Scholar
Baharifar, A. A., Moinevaziri, H., Bellon, H. & Pique, A. 2004. The crystalline complexes of Hamadan (Sanandaj–Sirjan zone, western Iran): metasedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events, II. 40K–40Ar dating. Geoscience 336, 1443–52.CrossRefGoogle Scholar
Berberian, F. & Berberian, M. 1981. Tectono-plutonic episodes in Iran. In Zagros Hindukush, Himalaya Geodynamic Evolution (eds Gupta, H. K. & Delany, F. M.), pp. 532. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Berberian, M. & King, G. C. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.CrossRefGoogle Scholar
Berman, R. 1991. Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Canadian Mineralogist 29, 833–55.Google Scholar
Bucher-Nurminen, K. & Droop, G. 1983. The metamorphic evolution of garnet–cordierite–sillimanite–gneisses of the Gruf-Complex, Eastern Pennine Alps. Contributions to Mineralogy and Petrology 84, 215–27.CrossRefGoogle Scholar
Carson, C. J., Powell, R., Wilson, C. J. L. & Dirks, P. H. G. M. 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. Journal of Metamorphic Geology 15, 105–26.CrossRefGoogle Scholar
Cenki, B., Kriegsman, L. M. & Braun, I. 2002. Melt-producing and melt-consuming reactions in anatectic granulites: P–T evolution of the Achankovil cordierite gneisses, South India. Journal of Metamorphic Geology 20, 543–61.CrossRefGoogle Scholar
Cesare, B., Marchesi, C., Hermann, J. & Gomez-Pungnaire, M. T. 2003. Primary melt inclusions in andalusite from anatectic graphitic metapelites: implications for the position of the Al2SiO5 triple point. Journal of Metamorphic Geology 31, 573–6.Google Scholar
Clarke, G. L. & Powell, R. 1991. Decompressional coronas and symplectites in granulites of the Musgrave Complex, central Australia. Journal of Metamorphic Geology 9, 441–50.CrossRefGoogle Scholar
Droop, G. T. R. 1989. Reaction history of garnet-sapphirine granulites and conditions of Archaean high-pressure granulite-facies metamorphism in the Central Limpopo Mobile Belt, Zimbabwe. Journal of Metamorphic Geology 7, 383403.CrossRefGoogle Scholar
Fazlnia, A., Schenk, V., Straaten, F. & Mirmohammadi, M. 2009. Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran. Lithos 112, 413–33.CrossRefGoogle Scholar
Ganguly, J. & Saxena, S. 1984. Mixing properties of aluminosilicate garnets: constraints from natural and experimental data and applications to geothermobarometry. American Mineralogist 69, 8897.Google Scholar
Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 38, 235–73.CrossRefGoogle Scholar
Grant, J. A. & Frost, B. R. 1990. Contact metamorphism and partial melting of pelitic rocks in the aureole of the Laramie anorthosite complex, Morton Pass, Wyoming. American Journal of Science 290, 425–72.CrossRefGoogle Scholar
Greenfield, J. E., Clarke, G. L. & White, W. 1998. A sequence of partial melting reactions at Mount Stafford, central Australia. Journal of Metamorphic Geology 16, 363–78.CrossRefGoogle Scholar
Hand, M., Dirks, P. H. G. M., Powell, R. & Buick, I. S. 1992. How well established is isobaric cooling in Proterozoic orogenic belts? An example from the Arunta inlier, central Australia. Geology 20, 649–52.2.3.CO;2>CrossRefGoogle Scholar
Hand, M., Scrimgeour, I., Powell, R., Stüwe, K. & Wilson, C. J. L. 1994. Metapelitic granulites from Jetty Peninsula, east Antarctica: formation during a single event or by polymetamorphism? Journal of Metamorphic Geology 12, 557–73.CrossRefGoogle Scholar
Helffrich, G. & Wood, B. 1989. Subregular model for multicomponent solutions. American Mineralogist 74, 1016–22.Google Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science 271, 97131.CrossRefGoogle Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.CrossRefGoogle Scholar
Ings, S. J. & Owen, J. V. 2002. Decompressional reaction textures formed by isobaric heating: an example from the thermal aureole of the Taylor Brook Gabbro Complex, western Newfoundland. Mineralogical Magazine 66, 941–51.CrossRefGoogle Scholar
Johnson, T., Brown, M., Gibson, R. & Wing, B. 2004. Spinel–cordierite symplectites replacing andalusite: evidence for melt-assisted diapirism in the Bushveld Complex, South Africa. Journal of Metamorphic Geology 22, 529–45.CrossRefGoogle Scholar
Khalaji, A. A., Esmaeily, D., Valizadeh, M. V. & Rahimpour-Bonab, H. 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 29, 859–77.CrossRefGoogle Scholar
Koziol, A. M. & Newton, R. C. 1988. Redetermination of the anorthite breakdown reaction and improvement of the plagioclase–garnet–aluminosilicate–quartz geobarometer. American Mineralogist 73, 216–23.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogy 68, 277–9Google Scholar
Marmo, B. A., Clarke, G. L. & Powell, R. 2002. Fractionation of bulk rock composition due to porphyroblast growth; effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology 20, 151–65.CrossRefGoogle Scholar
McDade, P. & Harley, S. L. 2001. A petrogenetic grid for aluminous granulite facies metapelites in the KFMASH system. Journal of Metamorphic Geology 19, 4559.CrossRefGoogle Scholar
Mezger, J. E., Chacko, T. & Erdmer, P. 2001. Metamorphism along a late Mesozoic accretionary continental margin: a case study from the northern Coast Belt of the North American Cordillera. Journal of Metamorphic Geology 19, 121–38.CrossRefGoogle Scholar
Mohajjel, M. & Fergusson, C. L. 2000. Dextral transpression in Late Cretaceous continental collision, Sandandaj–Sirjan Zone, western Iran. Journal of Structural Geology 22, 1125–39.CrossRefGoogle Scholar
Mohajjel, M., Fergusson, C. L. & Sahandi, M. R. 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 21, 397412.CrossRefGoogle Scholar
Norlander, B. H., Whitney, D. L., Teyssier, C. & Vanderhaeghe, O. 2002. Partial melting and decompression of the Thor-Odin Dome, Shuswap metamorphic core complex, Canadian Cordillera. Lithos 61, 103–25.CrossRefGoogle Scholar
Omrani, J., Agard, Ph., Whitechurch, H., Benoit, M., Prouteau, G. & Jolivet, L. 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–98.CrossRefGoogle Scholar
Passchier, C. W. & Trouw, R. A. J. 1996. Microtectonics. Heidelberg: Springer-Verlag, 289 pp.Google Scholar
Pitra, P. & De Wall, S. A. 2001. High-temperature, low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa). Journal of Metamorphic Geology 19, 311–25.Google Scholar
Riesco, M., Stüwe, K., Reche, J. & Martinez, J. 2004. Silica depleted melting of pelites. Petrogenetic grid and application to the Susqueda Aureole, Spain. Journal of Metamorphic Geology 22, 475–94.CrossRefGoogle Scholar
Robinson, P. R., Hollocher, K. T., Tracy, R. J. & Dietsch, C. W. 1982. High grade Acadian regional metamorphism in south-central Massachusetts. In NEIGC 74th Annual Meeting of the State Geological and Natural History Survey of Connecticut, guidebook for fieldtrips in Connecticut and South-Central Massachusetts (eds Joester, R. A. & Quarrier, S. S.), pp. 289340. Storrs: The University of Connecticut.Google Scholar
Saki, A. & Baharifar, A. A. 2010. Common melting reactions and their characteristics in the Alvand aureole metapelites, Hamadan. Iranian Jounal of Geosciences (in press).Google Scholar
Saki, A. & Pourkaseb, H. 2010. P–T Conditions and fluid composition for wollastonite-clinopyroxene-garnet-bearing calc-silicate rocks from contact aureole of the Alvand batholite, Hamadan. Shahid Chamran University Journal of Sciences (in press).Google Scholar
Sears, J. W., George, G. M. S. & Winne, J. C. 2005. Continental rift systems and anorogenic magmatism. Lithos 80, 147–54.CrossRefGoogle Scholar
Sederholm, J. J. 1967. Selected Works: Granite and Migmatites. Edinburgh: Oliver and Boyd.Google Scholar
Sepahi, A. A., Whitney, D. L. & Baharifar, A. A. 2004. Petrogenesis of And–Ky–Sil veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. Journal of Metamorphic Geology 22 (2), 119–34.CrossRefGoogle Scholar
Shahabpour, J. 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405–17.CrossRefGoogle Scholar
Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., ShangC. K., Vousoughi C. K., Vousoughi. & Abedini, M. 2010. Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassic magmatism. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2010.04.014, in press.CrossRefGoogle Scholar
Spear, F. S. 1993. Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths. Monograph 1. Washington, DC: Mineralogical Society of America.Google Scholar
Stüwe, K. 1997. Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contributions to Mineralogy and Petrology 129, 4352.CrossRefGoogle Scholar
Topuz, G., Altherra, R., Kalta, A., Satirb, M., Wernera, O. & Schwarza, W. H. 2004. Aluminous granulites from the Pulur complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallisation. Lithos 72, 183207.CrossRefGoogle Scholar
Vernon, R. H. 1996. Problems with inferring P–T–t paths in low-P granulite facies rocks. Journal of Metamorphic Geology 14, 143–53.CrossRefGoogle Scholar
Waters, D. J. 1991. Hercynite-quartz granulites: phase relations and implications for crustal processes. European Journal of Mineralogy 3, 367–86.CrossRefGoogle Scholar
White, R. W., Powell, R. & Clarke, G. L. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgOAl2O3–SiO2–H2O–TiO2–Fe2O3. Journal of Metamorphic Geology 20, 4155.CrossRefGoogle Scholar
White, R. W., Powell, R. & Clarke, G. L. 2003. Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. Journal of Petrology 44, 1937–60.CrossRefGoogle Scholar
White, R. W., Powell, R. & Holland, T. J. B. 2001. Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). Journal of Metamorphic Geology 19, 139–53.CrossRefGoogle Scholar
Whittington, A., Harris, N. & Baker, J. 1998. Low-pressure crustal anatexis. In What Drives Metamorphism and Metamorphic Reactions? (eds Treolar, P. J. & O'Brien, P. J.), pp. 183–98. Geological Society of London, Special Publication no. 138.Google Scholar
Supplementary material: Image

Saki supplementary material

Colour figure.tif

Download Saki supplementary material(Image)
Image 10.8 MB