Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:29:18.541Z Has data issue: false hasContentIssue false

Dinoflagellate cysts of the La Meseta Formation (middle to late Eocene), Antarctic Peninsula: implications for biostratigraphy, palaeoceanography and palaeoenvironment

Published online by Cambridge University Press:  12 July 2019

Cecilia R. Amenábar*
Affiliation:
Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, provincia de Buenos Aires, Argentina Instituto de Estudios Andinos ‘Don Pablo Groeber’, Consejo Nacional de Investigaciones Científicas y Técnicas, (IDEAN – CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Guiraldes 2160, CP 1428EGA, Buenos Aires, Argentina Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Guiraldes 2160, CP 1428EGA, Buenos Aires, Argentina
Manuel Montes
Affiliation:
Instituto Geológico y Minero de España (IGME), Área de Geología, Geomorfología y Cartografía Geológica, Calera 1, 28760, Tres Cantos, Madrid, Spain
Francisco Nozal
Affiliation:
Instituto Geológico y Minero de España (IGME), Área de Geología, Geomorfología y Cartografía Geológica, Calera 1, 28760, Tres Cantos, Madrid, Spain
Sergio Santillana
Affiliation:
Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, provincia de Buenos Aires, Argentina
*
*Author for correspondence: Cecilia R. Amenábar, Email: amenabar@gl.fcen.uba.ar

Abstract

Dinoflagellate cyst assemblages recovered from the La Meseta Formation cropping out in Seymour Island, Antarctic Peninsula, are studied herein and their distribution is compared with the biostratigraphic scheme available for the Palaeogene of the Southern Ocean and other high-latitude regions. In this way, the La Meseta Formation is dated as middle Lutetian to Priabonian (46.2–36 Ma), which differs from the age provided by other fossils, isotopes and also with the magnetostratigraphic scheme recently performed for the unit. The dinoflagellate cyst data support the proposal of ocean circulation patterns on the South American Shelf prior to the opening of Drake Passage. Assemblages from the La Meseta Formation contain Antarctic-endemic taxa which are also dominant in several circum-Antarctic sites, located south of 45° S. Their distribution reflects an ocean-circulation scheme with wide clockwise gyres surrounding Antarctica that were disrupted as a consequence of the deepening and definitive apertures of the Tasmanian Gateway and Drake Passage towards the Eocene/Oligocene transition. The palaeoenvironmental inference based on the S/D ratio (sporomorphs versus dinoflagellate cysts) and the P/G ratio (peridinioid versus gonyaulacoid dinoflagellate cysts) suggests an overall trend through the section from marine-dominated assemblages with poorly productive waters in the lower part of the section to more terrestrially dominated assemblages with increasing productivity in the upper part of the unit, reflecting a shallowing trend to the top.

Type
Original Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez, MJ, del Río, CJ and Marenssi, SA (2014) Revisión del Género Retrotapes del Río (Bivalvia: Veneridae) en el Eoceno de la Antártida. Ameghiniana 51, 6178.CrossRefGoogle Scholar
Askin, RA (1997) Eocene–? Earliest Oligocene terrestrial palynology of Seymour Island, Antarctica. In The Antarctic Region: Geological Evolution and Processes (ed Ricci, C), pp. 993–6. Proceedings of the VII International Symposium on Antarctic Earth Sciences. Siena: Terra Antartica Publication.Google Scholar
Askin, RA and Elliot, DH (1982) Geological implications of recycled Permian and Triassic palynomorphs in Tertiary rocks of Seymour Island, Antarctic Peninsula. Geology 10, 547–51.2.0.CO;2>CrossRefGoogle Scholar
Askin, RA and Fleming, RF (1982) Palynological investigations of Campanian to lower Oligocene sediments on Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States 17, 70–1.Google Scholar
Barbeau, DL Jr, Olivero, EB, Swanson-Hysell, NL, Zahid, KM, Murray, KE and Gehrels, GE (2009) Detrital-zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters 284, 489503.CrossRefGoogle Scholar
Beamud, E, Montes, M, Santillana, S, Nozal, F and Marenssi, S (2015) Magnetostratigraphic dating of Paleogene sediments in the Seymour Island (Antarctic Peninsula): a preliminary chronostratigraphy. American Geophysical Union, Fall Meeting, Abstract GP51B-1331.Google Scholar
Bijl, PK, Bendle, JAP, Bohaty, SM, Pross, J, Schouten, S, Tauxe, L, Stickley, CE, McKay, RM, Röhl, U, Olney, M, Sluij, A, Escutia, C, Brinkhuis, H and Expedition 318 Scientists (2013b) Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences 110, 9645–50.CrossRefGoogle ScholarPubMed
Bijl, PK, Houben, AJP, Schouten, S, Bohaty, SM, Sluijs, A, Reichart, GJ and Sinnighe Damste, JS (2010) Transient Middle Eocene Atmospheric CO2 and temperature variations. Science 330, 819–21.CrossRefGoogle Scholar
Bijl, PK, Pross, J, Warnaar, J, Stickley, CE, Huber, M, Guerstein, R, Houben, AJP, Sluijs, A, Visscher, H and Brinkhuis, H (2011) Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography 26, PA1202. doi: 10.1029/2009PA001905.CrossRefGoogle Scholar
Bijl, PK, Sluijs, A and Brinkhuis, H (2013a) A magneto-chemo-stratigraphically calibrated dinoflagellate cyst zonation of the early Paleogene South Pacific Ocean. Earth Science Review 124, 131.CrossRefGoogle Scholar
Bond, M, Kramarz, A, MacPhee, RDE and Reguero, M (2011) A new astrapothere (Mammalia, Meridiungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic astrapotheres. American Museum Novitates 3718, 116.CrossRefGoogle Scholar
Brinkhuis, H, Munsterman, DM, Sengers, S, Sluijs, A, Warnaar, J and Williams, GL (2003) Late Eocene to Quaternary dinoflagellate cysts from ODP Site 1168, off western Tasmania. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 189 (eds Exon, NF, Kennett, JP and Malone, M), pp. 136. College Station, Texas.CrossRefGoogle Scholar
Buono, MR, Fernández, MS, Reguero, MA, Marenssi, SA, Santillana, SN and Mörs, T (2016) Eocene basilosaurid whales from the La Meseta Formation, Marambio (Seymour) Island, Antarctica. Ameghiniana 53, 296315.CrossRefGoogle Scholar
Casadío, S, Griffin, M, Marenssi, S, Net, LI,Parras, AM, Rodriguez Raising, M and Santillana, S (2009) Paleontology and sedimentology of Middle Eocene rocks in Lago Argentino area, Santa Cruz Province, Argentina. Ameghiniana 46, 2747.Google Scholar
Cocozza, CD and Clarke, CM (1992) Eocene microplankton from La Meseta Formation, northern Seymour Island. Antarctic Science 4, 355–62.CrossRefGoogle Scholar
Concheyro, GA (1991) Nanofósiles calcáreos de la Formación Man Aike (Eoceno, sudeste del Lago Cardiel) Santa Cruz, Argentina. Ameghiniana 28, 385–99.Google Scholar
Concheyro, GA, Amenábar, CR, Santillana, S, Montes Santiago, MJ and Borja Nozal Martín, F (2016) Primer registro de nanofósiles calcáreos en la Formación La Meseta (Eoceno medio), Isla Marambio, Antártida. 11º Congreso de la Asociación Paleontológica Argentina, 17 al 21 de octubre de 2016, General Roca, provincia de Río Negro. Libro de resúmenes, abstract no. 126.Google Scholar
Daners, G, Guerstein, GR, Amenábar, CR and Morales, E (2016) Dinoflagelados del Eoceno medio a tardío de las cuencas Punta del Este y Colorado, latitudes medias del atlántico sudoccidental. Revista Brasileira de Paleontologia 19, 281300.CrossRefGoogle Scholar
Douglas, PMJ, Affek, HP, Ivany, LC, Houben, AJP, Sijp, WP, Sluijs, A, Schouten, S and Pagani, M (2014) Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proceedings of the National Academy of Sciences 111, 6582–87.CrossRefGoogle ScholarPubMed
Dutton, A, Lohmann, K and Zinsmeister, W (2002) Stable isotope and minor element proxies for Eocene climate of Seymour Island. Antarctica. Paleoceanography 17, 113.CrossRefGoogle Scholar
Eaton, GL (1971) A morphogenetic series of dinoflagellate cysts from the Bracklesham Beds of the Isle of Wight, Hampshire, England. In Proceedings of the Second Planktonic Conference (ed. Farinacci, A), pp. 355–79. Rome: Edizioni Tecnoscienza.Google Scholar
Elliot, D and Trautman, T (1982) Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In Antarctic Geoscience (ed. Craddock, C), pp. 287–97. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Elliot, DH (1988) Tectonic setting and evolution of the James Ross Basin, Northern Antarctic Peninsula. In Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldmann, RM and MWoodburne, O), pp. 541–55. Boulder, Colorado: Geological Society of America, Memoir no. 169.CrossRefGoogle Scholar
Esper, O and Zonneveld, KAF (2007) The potential of organic-walled dinoflagellate cysts for the reconstruction of past sea-surface conditions in the Southern Ocean. Marine Micropaleontology 65, 185212.CrossRefGoogle Scholar
Fensome, RA, Guerstein, GR and Williams, GL (2006) The Paleogene dinoflagellate cyst genera Enneadocysta and Licracysta gen. nov.: new insights based on material from offshore eastern Canada and the Southern Hemisphere. Micropaleontology 52, 385410.CrossRefGoogle Scholar
Fensome, RA and Williams, GL (2005) Scotian Margin PalyAtlas version 1. Geological Survey of Canada, Open File 4677, 180 pp.; 1 CD-ROM. doi: 10.4095/221057.CrossRefGoogle Scholar
Gandolfo, MA, Hoc, P, Santillana, S and Marenssi, S (1998) Una flor fósil morfológicamente afín a las Grossulariaceae (Orden Rosales) de la Formación La Meseta (Eoceno Medio) Isla Marambio, Antártida. In Paleógeno de América del Sur y de la Península Antártica (ed. Casadío, S), pp. 147–53. Maipú: Asociación Paleontológica Argentina. Publicación Especial n° 5.Google Scholar
Gaździcki, A and Majewski, W (2012) Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science 24, 408–16.CrossRefGoogle Scholar
Gaździcki, A, Tatur, A, Hara, U and del Valle, RA (2004) The Weddell Sea Formation: post-Late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic Peninsula. Polish Polar Research 25, 189204.Google Scholar
Gelfo, JN, Mors, T, Lorente, M, Lòpez, GM and Reguero, M (2015) The oldest mammals from Antarctica, early Eocene of the La Meseta Formation, Seymour Island. Palaeontology 58, 101–10.CrossRefGoogle Scholar
Gelfo, JN, Reguero, MA, López, GM, Carlini, AA, Ciancio, MR, Chornogubsky, L, Bond, M, Goin, FJ and Tejedor, M (2009) Eocene mammals and continental strata from Patagonia and Antarctic Peninsula. In Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne (ed. Albright, LB III), pp. 567–92. Flagstaff, Arizona: Museum of Northern Arizona Bulletin 64.Google Scholar
González Estebenet, MS, Guerstein, GR, Rodríguez Raising, ME, Ponce, JJ and Alperín, MI (2016) Dinoflagellate cyst zonation for the middle to upper Eocene in the Austral Basin, southwestern Atlantic Ocean: implications for regional and global correlation. Geological Magazine 154, 1022–36.CrossRefGoogle Scholar
González Estebenet, MS, Guerstein, R and Alperin, MI (2014) Dinoflagellate cyst distribution during the Middle Eocene in the Drake Passage area: paleoceanographic implications. Ameghiniana 51, 500–9.CrossRefGoogle Scholar
Goodman, DK (1979) Dinoflagellate “communities” from the lower Eocene Nanjemoy Formation of Maryland, USA. Palynology 3, 169–90.CrossRefGoogle Scholar
Goodman, DK and Ford, LN (1983) Preliminary dinoflagellate biostratigraphy for the middle Eocene to lower Oligocene from the southwest Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 17, 859–77.Google Scholar
Guerstein, GR, Brinkhuis, H and Daners, G (2008) Eocene circulation and dinoflagellate distribution in the Southwestern Atlantic Ocean. XII Reunión Argentina de Sedimentología (Buenos Aires), Resúmentes: 81.Google Scholar
Guerstein, GR and Daners, G (2010) Distribución de Enneadocysta (Dinoflagellata) en el Paleógeno del Atlántico Sudoccidental: implicancias paleoceanográficas. Ameghiniana 47, 461–78.CrossRefGoogle Scholar
Guerstein, RG, Daners, G, Palma, E, Ferreira, EP, Premoar, E, Amenábar, CR and Belgaburo, A (2016) Middle Eocene paleocirculation of the southwestern Atlantic Ocean, the anteroom to an ice-house world: evidence from dinoflagellates. Geophysical Research Abstracts 18, EGU2016-10131-1.Google Scholar
Hall, SA (1977) Cretaceous and Tertiary dinoflagellates from Seymour Island, Antarctica. Nature 267, 239–41.CrossRefGoogle Scholar
Hannah, MJ (1997) Climate controlled dinoflagellate distribution in Late Eocene-Earliest Oligocene strata from CIROS-1 drillhole, McMurdo Sound, Antarctica. Terra Antarctica 4, 73–8.Google Scholar
Houben, AJ, Bijl, PK, Pross, J, Bohaty, SM, Passchier, S, Stickley, CE, Röhl, U, Sugisaki, S, Tauxe, L, Flierdt, T, Olney, M, Sangiorgi, F, Sluijs, A, Escutia, C, Brinkhuis, H and Expedition 318 Scientists (2013) Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciations. Science 340, 341–4.CrossRefGoogle Scholar
Huber, M, Brinkhuis, H, Stickley, CE, Döös, K, Sluijs, A, Warnaar, J, Schellenberg, SA and Williams, GL (2004) Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography 19, PA4026. doi: 10.1029/2004PA001014.CrossRefGoogle Scholar
Ivany, L, Lohmann, K, Hasiuk, F, Blake, D, Glass, A, Aronson, R and Moody, R (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin 120, 659–78.CrossRefGoogle Scholar
Klumpp, B (1953) Beitrag zur Kenntnis der Mikrofossilien des mittleren und oberen Eozän. Palaeontographica, Abteilung A 103, 377406.Google Scholar
Lentin, JK and Williams, GL (1980) Dinoflagellate provincialism with emphasis on Campanian peridiniaceans. American Association of Stratigraphic Palynologists Contribution Series 7, 147.Google Scholar
Livermore, R, Hillenbrand, CD, Meredith, M and Eagles, G (2007) Drake Passage and Cenozoic climate: an open and shut case? Geochemistry Geophysics Geosystems 8, Q01005. doi: 10.1029/2005GC001224.CrossRefGoogle Scholar
Livermore, R, Nankivell, A, Eagles, G and Morris, P (2005) Paleogene opening of Drake Passage. Earth Planetary Science Letters 236, 459–70.CrossRefGoogle Scholar
Malumián, N (1990) Foraminíferos de la Formación Man Aike (Eoceno, Sureste Lago Cardiel) Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 45, 365–85.Google Scholar
Mao, S and Mohr, BAR (1995) Middle Eocene dinocysts from Bruce Bank (Scotia Sea, Antarctica) and their paleoenvironmental and paleogeographic implications. Review of Palaeobotany and Palynology 86, 235–63.CrossRefGoogle Scholar
Marenssi, S, Casadío, S and Santillana, S (2010) Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science 22, 193–8.CrossRefGoogle Scholar
Marenssi, S, Net, L and Santillana, S (2002) Provenance, environmental and paleogeographic controls on sandstone composition in an incised valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology 150, 301–21.CrossRefGoogle Scholar
Marenssi, S, Santillana, S and Rinaldi, C (1998) Stratigraphy of La Meseta Formation (Eocene), Marambio Island, Antarctica. In Paleógeno de América del Sur y de la Península Antártica (ed. Casadío, S), pp. 137–46. Maipú: Revista de la Asociación Paleontológica Argentina, Publicación Especial no. 5.Google Scholar
Marenssi, SA (2006) Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica. In Cretaceous Tertiary High-latitude Palaeoenvironments, James Ross Basin, Antarctica (eds Francis, JE, Pirrie, D and Crame, JA), pp. 125–33. Geological Society of London, Special Publication no. 258.Google Scholar
McArthur, JM, Howarth, RJ and Bailey, TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109, 155–70.CrossRefGoogle Scholar
Menéndez, CA (1965) Microplancton fósil de sedimentos Terciarios y Cretácicos del norte de Tierra del Fuego (Argentina). Ameghiniana 4, 718.Google Scholar
Montes, M, Beamud, E, Nozal, F and Santillana, S (2019a) Late Maastrichtian-Paleocene chronostratigraphy from Seymour (Marambio) Island (James Ross Basin, Antarctic Peninsula). Eustatic controls of sedimentation. In Geology and Palaeontology of the James Ross Basin, Antarctic Peninsula (eds Crame, JA, Acosta Hospitaleche, C, Gelfo, J), p. 46. Shanghai, China: Advances in Polar Science. Special Issue. 30 (2), 1–12. doi: 10.13679/j.advps.2019.2.00Google Scholar
Montes, M, Nozal, F, Olivero, E, Gallastegui, G, Maestro, A, Santillana, S and Martín-Serrano, A (2019b) In Geología y Geomorfología de la isla Marambio (Seymour) (eds Montes, M, Nozal, F and Santillana, S), pp. 1250. Serie Cartográfica Geocientífica Antártica; 1:20.000. Madrid: Instituto Geológico y Minero de España; Buenos Aires: Instituto Antártico Argentino.Google Scholar
Montes, M, Nozal, F, Santillana, S, Marenssi, S and Olivero, E (2013) Mapa Geológico de la Isla Marambio (Seymour); escala 1:20.000. Serie Cartográfica Geocientífica Antártica. Con texto complementario. Madrid: Instituto Geológico y Minero de España; Buenos Aires: Instituto Antártico Argentino.Google Scholar
Montes, M, Santillana, S, Nozal, F and Marenssi, S (2008) El Paleoceno superior de la Antártida: la Formación Cross Valley-Wiman de la Isla Marambio (Mar de Weddell). Geo-Temas 10, 667–8.Google Scholar
Olivero, E, Ponce, J and Martinioni, D (2008) Sedimentology and architecture of sharp-based tidal sandstones in the Upper Marambio Group, Maastrichtian of Antarctica. Sedimentary Geology 210, 1126.CrossRefGoogle Scholar
Porebski, SJ (1995) Facies architecture in a tectonically-controlled incised valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Studia Geologica Polonica 107, 797.Google Scholar
Pross, J and Brinkhuis, H (2005) Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts. Paläontologische Zeitschrift 79, 53–9.CrossRefGoogle Scholar
Pujana, RR, Santillana, SN and Marenssi, SA (2014) Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests. Review of Palaeobotany and Palynology 200, 122–37.CrossRefGoogle Scholar
Reguero, M, Goin, F, Acosta, C, Dutra, T and Marenssi, S (2013) South America/West Antarctica: Pacific affinities of the Weddellian marine coastal vertebrates. In Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental Affinities, pp. 27–54. Dordrecht: Springer.CrossRefGoogle Scholar
Reguero, MA, Marenssi, SA and Santillana, SN (2012) Weddellian marine/coastal vertebrate diversity from a basal horizon (Ypresian, Eocene) of the Cucullaea I Allomember, La Meseta Formation, Seymour (Marambio) Island, Antarctica. Revista Peruana de Biología 19, 275–84.Google Scholar
Rinaldi, C (1982) The Upper Cretaceous in the James Ross Island Group. In Antarctic Geoscience (ed. Craddock, C), pp. 281–6. Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Rinaldi, C, Massabie, A, Morelli, J, Rosenman, L and del Valle, R (1978) Geología de la isla Vicecomodoro Marambio, Antártida. Contribución del Instituto Antártico Argentino 217, 137.Google Scholar
Röhl, U, Brinkhuis, H, Stickley, CE, Fuller, M, Schellenberg, SA, Wefer, G, and Williams, GL (2004) Sea level and astronomically induced environmental changes in middle and late Eocene sediments from the East Tasman Plateau. In Climate Evolution of the Southern Ocean and Australia’s Northward Flight from Antarctica (eds Exon, NF, Malone, M and Kennett, JP), pp. 127–51. Boulder, Colorado: American Geophysical Union, Geophysical Monograph Series no. 151.Google Scholar
Sadler, P (1988) Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldman, RM and Woodbu, MOrne), pp. 303–20. Boulder, Colorado: Geological Society of America, Memoir no. 169.CrossRefGoogle Scholar
Sarjeant, WAS (1981) A restudy of some dinoflagellate cyst holotypes in the University of Kiel Collections II. The Eocene holotypes of Barbara Klumpp (1953); with a revision of the genus Cordosphaeridium Eisenack, 1963. Meyniana 33, 97132.Google Scholar
Sarjeant, WAS (1982) Dinoflagellate cyst terminology: a discussion and proposals. Canadian Journal of Botany 60, 922–45.CrossRefGoogle Scholar
Scher, HD and Martin, EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–30.CrossRefGoogle ScholarPubMed
Schrank, E (2003) Small acritarchs from the Upper Cretaceous: taxonomy, biological affinities and palaeoecology. Review of Palaeobotany and Palynology 123, 199235.CrossRefGoogle Scholar
Sluijs, A, Brinkhuis, H, Stickley, CE, Warnaar, J, Williams, GL and Fuller, M (2003) Dinoflagellate cysts from the Eocene/Oligocene transition in the Southern Ocean; results from ODP Leg 189. In Proceedings of the Ocean Drilling Program, vol. 189 (eds Exon, NF, Kennett, JP and Alone, MJ), pp. 142. College Station, Texas.CrossRefGoogle Scholar
Sluijs, A, Pross, J and Brinkhuis, H (2005) From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth Science Reviews 68, 281315.CrossRefGoogle Scholar
Smellie, JL, Pankhurst, RJ, Hole, MJ and Thomson, JW (1988) Age, distribution and eruptive conditions of late Cenozoic alkaline volcanism in the Antarctic Peninsula and eastern Ellsworth Land: review. British Antarctic Survey Bulletin 88, 2149.Google Scholar
Smith, SW (1992) Microplankton from the Cape Lamb Member, López de Bertodano Formation (Upper Cretaceous), Cape Lamb, Vega Island. Antarctic Science 4, 337–53.CrossRefGoogle Scholar
Stickley, CE, Brinkhuis, H, Schellenberg, SA, Sluijs, A, Röhl, U, Fuller, M, Grauert, M, Huber, M, Warnaar, J and Williams, GL (2004) Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 19, PA4027. doi: 10.1029/2004PA001022.CrossRefGoogle Scholar
Stilwell, J and Zinsmeister, W (1992) Molluscan systematics and biostratigraphy, Lower Tertiary La Meseta Formation, Seymour Island, Antarctic Peninsula. American Geophysical Union, Antarctic Research Series 55, 1192.Google Scholar
Stover, LE and Williams, GL (1995) A revision of the Paleogene dinoflagellate genera Areosphaeridium Eaton 1971 and Eatonicysta Stover and Evitt 1978. Micropaleontology 41, 97141.CrossRefGoogle Scholar
Tatur, A, Krajewski, KP and del Valle, RA (2011) The facies and biota of the oldest exposed strata of the Eocene La Meseta Formation (Seymour Island, Antarctica). Geological Quarterly 55, 345–60.Google Scholar
Tejedor, MF, Goin, FJ, Gelfo, JN, López, GM, Bond, M, Carlini, AA, Scillato-Yan, GJ, Woodburne, MO, Chornogubsky, L, Aragón, E, Reguero, MA, Czaplewski, NJ, Vincon, S, Martin, GM and Ciancio, MR (2009) New early Eocene mammalian fauna from western Patagonia, Argentina. American Museum Novitates 3638, 143.CrossRefGoogle Scholar
Truswell, EM (1997) Palynomorph assemblages from marine Eocene sediments on the West Tasmanian continental margin and the South Tasman Rise. Australian Journal of Earth Sciences 4, 633–54.CrossRefGoogle Scholar
Uchman, A and Gaździcki, A (2006) New trace fossils from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research 27, 153–70.Google Scholar
Vandenberghe, N, Speijer, RP and Hilgen, FJ (2012) The Paleogene Period. In The Geologic Time Scale (eds Gradstein, FM,Ogg, JG, Schmitz, MD and Ogg, GM), pp. 855922. Amsterdam: Elsevier.CrossRefGoogle Scholar
Versteegh, GJM (1994) Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: a palynological approach. Marine Micropaleontology 23, 147–83.CrossRefGoogle Scholar
Williams, GL, Fensome, RA and MacRae, RA (2017) DINOFLAJ3. 125–33. American Association of Stratigraphic Palynologists, Data Series no. 2. Available at http://dinoflaj.smu.ca/dinoflaj3.Google Scholar
Wood, GD, Gabriel, AM and Lawson, JC (1996) Palynological techniques – processing and microscopy. In Palynology: Principles and Applications (eds Jansonius, J and McGregor, DC), vol. 1, pp. 2950. Dallas, Texas: American Association of Stratigraphic Palynologists.Google Scholar
Woodburne, MO and Zinsmeister, WJ (1982) Fossil land mammal from Antarctica. Science 218, 284–6.CrossRefGoogle ScholarPubMed
Wrenn, JH and Hart, GF (1988) Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. In Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldman, RM & Woodburne, MO), pp. 321447. Boulder, Colorado: Geological Society of America, Memoir no. 169.CrossRefGoogle Scholar
Zinsmeister, WJ and Webb, P (1982) Cretaceous-Tertiary geology and paleontology of Cockburn Island. Antarctic Journal of the United States 17, 41–2.Google Scholar
Zinsmeister, WJ and Camacho, HH (1980) Late Eocene Struthiolariidae (Mollusca: Gastropoda) from Seymour Island, Antarctic Peninsula and their significance to the biogeography of early Tertiary shallow-water faunas of the Southern Hemisphere. Journal of Paleontology 54, 114.Google Scholar
Supplementary material: File

Amenábar et al. supplementary material

Amenábar et al. supplementary material 1

Download Amenábar et al. supplementary material(File)
File 41.5 KB