Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:04:48.891Z Has data issue: false hasContentIssue false

Detrital zircon U–Pb ages and Hf isotopic composition of the Ordovician Duguer quartz schist, central Tibetan Plateau: constraints on tectonic affinity and sedimentary source regions

Published online by Cambridge University Press:  28 April 2016

YIMING LIU
Affiliation:
The College of Earth Sciences, Jilin University, Changchun 130061, PR China
CAI LI*
Affiliation:
The College of Earth Sciences, Jilin University, Changchun 130061, PR China
CHAOMING XIE
Affiliation:
The College of Earth Sciences, Jilin University, Changchun 130061, PR China
JIANJUN FAN
Affiliation:
The College of Earth Sciences, Jilin University, Changchun 130061, PR China
HAO WU
Affiliation:
The College of Earth Sciences, Jilin University, Changchun 130061, PR China
*
*Author for correspondence: licai010@126.com

Abstract

Many previous studies have investigated the late Palaeozoic ophiolites, migmatites and high-pressure metamorphic belts of the Tibetan Plateau, whereas the early Palaeozoic evolution of the regions is relatively poorly understood. Lower Palaeozoic strata, including the Duguer quartz schist, occur in the Himalaya, Lhasa and South Qiangtang terranes of the Tibetan Plateau. In this study, we report the depositional age and sedimentary provenance of the Duguer quartz schist of the central South Qiangtang terrane, which enables us to interpret the tectonic affinity of the terrane. We obtained U–Pb ages, trace-element compositions and Hf isotopic data from zircons from the Duguer quartz schist. A total of 162 U–Pb analyses of detrital zircons from the schist yielded two pronounced age peaks at c. 600 Ma and c. 960 Ma. These results indicate that the provenance of the Duguer quartz schist is India Gondwana or the terranes that share an affinity with India Gondwana in the Tibetan Plateau, which include the South Qiangtang and Himalaya terranes. Detrital zircon crystals show large variations in Hf isotope compositions, with εHf(t), TDM and TDMC values of −52.5 to 13.2, 900–3300 Ma and 1010–4240 Ma, respectively. This suggests that the source area for the Duguer quartz schist included Precambrian rocks and, more specifically, Pan-African and Grenville–Jinning crustal material. During Pan-African and Grenville–Jinning events, crustal recycling and the addition of mantle material occurred in the source regions of the quartz schist, when the South Qiangtang, Lhasa and Himalaya terranes were all part of the northern margin of Gondwana.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
BGMR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region). 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Bickford, M. E., Basu, A., Patranabis-Deb, S., Dhang, P. C. & Schieber, J. 2011. Depositional history of the Chhattisgarh Basin, Central India: constraints from new SHRIMP zircon ages. Journal of Geology 119, 3350.CrossRefGoogle Scholar
Cai, Z. H., Xu, Z. Q., Duan, X. D., Li, H. Q., Cao, H. & Huang, X. M. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau. Acta Petrologica Sinica 29, 2123–40 (in Chinese with English abstract).Google Scholar
Cenki, B., Braun, I. & Brocher, M. 2004. Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: evidence from Nd isotope mapping, U–Pb and Rb–Sr geochronology. Precambrian Research 134, 275–92.CrossRefGoogle Scholar
Cheng, L. R., Chen, S. M. & Zhang, Y. C. 2007. Discovery of Early Paleozoic strata in south of Qiangtang, Northern Tibet and its significance. Journal of China University of Geosciences: Earth Science 32, 5962 (in Chinese with English abstract).Google Scholar
Collins, A. S., Santosh, M., Braun, I. & Clark, C. 2007. Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Research 155, 125–38.CrossRefGoogle Scholar
Dong, Y. S. & Li, C. 2009. Discovery of eclogite in the Guoganjianian Mountain, Central Qiangtang area, northern Tibet, China. Geological Bulletin of China 28, 1197–200 (in Chinese with English abstract).Google Scholar
Dong, C. Y., Li, C., Wan, Y. S., Wang, W., Wu, Y. W., Xie, H. Q. & Liu, D. Y. 2011. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: constraint on tectonic affinity and source regions. Science in China (Series D) 54, 1034–42.CrossRefGoogle Scholar
Dong, Y. S., Zhang, X. Z., Shi, J. R. & Wang, S. Y. 2009. Petrology and metamorphism of garnet–muscovite schist from high pressure metamorphic belt in central Qiangtang, northern Tibet, China. Geological Bulletin of China 28, 1201–6 (in Chinese with English abstract).Google Scholar
Fan, J. J., Li, C., Wang, M., Xie, C. M. & Xu, W. 2014a. Features, provenance, and tectonic significance of Carboniferous–Permian glacial marine diamictites in the Southern Qiangtang–Baoshan block, Tibetan Plateau. Gondwana Research 28, 1530–42.Google Scholar
Fan, J. J., Li, C., Xie, C. M. & Wang, M. 2014b. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco–Nujiang oceanic arm of the Neo-Tethys. International Geology Review 56, 1504–20.Google Scholar
Fan, J. J., Li, C., Xie, C. M. & Liu, Y. M. 2016. Depositional environment and provenance of the upper Permian–Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the Southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau. International Geology Review 58, 228–45.CrossRefGoogle Scholar
Fan, J. J., Li, C., Xu, J. X. & Wang, M. 2014c. Petrology, geochemistry, and geological significance of the Nadong ocean island, Banggongco–Nujiang suture, Tibetan plateau. International Geology Review 56, 915–28.CrossRefGoogle Scholar
Gehrels, G. E., Decelles, P. G., Martin, A., Ojha, T. P., Pinhassi, G. & Upreti, B. N. 2003. Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt. Geological Society of America Today 13, 49.Google Scholar
Gehrels, G. E., Decelles, P. G., Ojha, T. P. & Upreti, B. N. 2006. Geologic and U–Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. Journal of Asian Earth Science 28, 385408.Google Scholar
Gehrels, G. E., Kapp, P., Decelles, P. G., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N. & Yin, A. 2011. Detrital zircon geochronology of pre–Tertiary strata in the Tibetan–Himalayan orogen. Tectonics 30, TC5016, doi: 10.1029/2011TC002868.Google Scholar
Guynn, J., Kapp, P., Gehrels, G. & Ding, L. 2012. U–Pb geochronology of basement rocks in central Tibet and paleogeographic implications. Journal of Asian Earth Sciences 43, 2350.CrossRefGoogle Scholar
Guynn, J. H., Kapp, P., Pullen, A., Gehrels, G., Heizler, M. & Ding, L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34, 505–8.Google Scholar
Hu, Z., Liu, Y., Gao, S., Liu, W., Yang, L., Zhang, W., Tong, X., Lin, L., Zong, K., Li, M., Chen, H. & Zhou, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP–MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.Google Scholar
Hu, D. G., Wu, H. Z., Jiang, W., Shi, Y. R., Ye, P. S. & Liu, Q. S. 2005. SHRIMP zircon U–Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China (Series D) 48, 1377–86.Google Scholar
Hu, P. Y., Zhai, Q. G., Jahn, B. M., Wang, J., Li, C., Lee, H. Y. & Tang, S. H. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos 27, 318–38.Google Scholar
Huang, Y., Hao, J. Y., Bai, L., Deng, G. B., Zhang, G. X. & Huang, W. J. 2012. Stratigraphic and petrologic response to late Pan-African movement in Shidian area, western Yunnan Province. Geological Bulletin of China 31, 306–13 (in Chinese with English abstract).Google Scholar
Jin, X. C. 2002. Permo-Carboniferous sequences of Gondwana affinity in southwest China and their paleogeographic implications. Journal of Asian Earth Sciences 20, 633–46.Google Scholar
Kapp, P., Yin, A., Manning, C. E., Harrison, T. K. & Taylor, M. H. 2003. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22, 1043–68.Google Scholar
Li, C. 2003. Question about the basement of the Qiangtang micro-plate. Geological Review 49, 49 (in Chinese with English abstract).Google Scholar
Li, C. 2008. A review on 20 year's study of the Longmu Co–Shuanghu–Lancang River Suture Zone in Qinghai–Xizang (Tibet) Plateau. Geological Review 54, 105–19 (in Chinese with English abstract).Google Scholar
Li, C., Cheng, L. R., Zhang, Y. C. & Zhai, Q. G. 2004. Discovery of Ordovician–Devonian strata in the south of the Qiangtang area, Tibet. Geological Bulletin of China 23, 602–4 (in Chinese with English abstract).Google Scholar
Li, C., Dong, Y. S., Zhai, Q. G., Wang, L. Q., Yan, Q. R., Wu, Y. W. & He, T. T. 2008a. Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: evidence from SHRIMP U–Pb dating and its tectonic implications. Acta Petrologica Sinica 24, 31–6 (in Chinese with English abstract).Google Scholar
Li, C., Wang, T. W., Yang, D. M. & He, Z. H. 2000. Isotopic chronology of Duguer Granitic Gneiss of Central Qiangtang, Tibet. Journal of Changchun University of Science and Technology 30, 105–9 (in Chinese with English abstract).Google Scholar
Li, C., Wu, Y. W., Wang, M. & Yang, H. T. 2010. Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai–Tibet Plateau: discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdese area, Tibet, China. Geological Bulletin of China 29, 1733–6 (in Chinese with English abstract).Google Scholar
Li, C., Xie, Y. W., Sha, S. L. & Dong, Y. S. 2008b. SHRIMP U–Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China (in Chinese). Geological Bulletin of China 27, 64–8 (in Chinese with English abstract).Google Scholar
Li, C., Zhai, Q. G., Cheng, L. R., Xu, F. & Huang, X. P. 2005. Thought on some key geological problems in the Qiangtang area, Qinghai–Tibet Plateau. Geological Bulletin of China 24, 295301 (in Chinese with English abstract).Google Scholar
Li, C., Zhai, Q. G., Chen, W., Yu, J. J., Huang, X. P. & Zhang, Y. 2006. Ar–Ar chronometry of the eclogite from central Qiangtang area, Qinghai–Tibet Plateau. Acta Petrologica Sinica 22, 2843–9 (in Chinese with English abstract).Google Scholar
Li, C., Zhai, Q. G., Dong, Y. S., Liu, S., Xie, C. M. & Wu, Y. W. 2009. High-pressure eclogite–blueschist metamorphic belt and closure of Paleo-Tethys Ocean in Central Qiangtang, Qinghai–Tibet Plateau. Journal of Earth Science 20, 2737.Google Scholar
Li, C. & Zheng, A. 1993. Paleozoic stratigraphy in the Qiangtang region of Tibet: relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous. International Geology Review 35, 797804.Google Scholar
Liao, Q. A., Li, D. W., Lu, L., Yuan, Y. M. & Chu, L. L. 2008. Paleoproterozoic granitic gneisses of the Dinggye and LhagoiKangri areas from the higher and northern Himalaya, Tibet: geochronology and implications. Science in China (Series D: Earth Sciences) 51, 240–8.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, Y. M., Li, C., Xie, C. M., Fan, J. J., Wu, H., Jiang, Q. Y. & Li, X. 2016. Cambrian granitic gneiss within the Central Qiangtang terrane, Tibetan Plateau: implications for the early Paleozoic tectonic evolution of the Gondwanan margin. International Geology Review 58, 1043–63.Google Scholar
Lu, J. P., Zhang, N., Huang, W. H., Tang, Z. H., Li, Y. K., Xu, H., Zhou, Q. E., Lu, G. & Li, Q. 2006. Characteristics and significance of the metamorphic minerals glaucophane–lawsonite assemblage in the Hongjishan area, north–central Qiangtang, northern Tibet, China. Geological Bulletin of China 25, 70–5 (in Chinese with English abstract).Google Scholar
Ludwig, K. J. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4, 70 pp.Google Scholar
Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., Pradhan, V. R. & Sohl, L. E. 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana Basins? Precambrian Research 164, 137–59.Google Scholar
Metcalfe, I. 2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographic evolution of SE Asia. In Late Palaeozoic and Mesozoic Continental Ecosystems in SE Asia (eds Buffetaut, E., Cuny, G., Loeuff, J. Le & Suteethorn, V.), pp. 723. Geological Society of London, Special Publication no. 315.Google Scholar
Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 133.Google Scholar
Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Gruntli, P. & Draganits, E. 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine 138, 237–51.Google Scholar
Pan, G. T., Ding, J., Yao, D. S. & Wang, L. Q. 2004. Guidebook of 1:1500000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas. Chengdu, China: Chengdu Cartographic Publishing House, 48 pp.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Ding, L. & Zhang, Q. H. 2011. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure. Geological Society of America Bulletin 123, 585600.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D. & Ding, L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36, 351–4.Google Scholar
Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.Google Scholar
Tan, F. W., Chen, M., Wang, J., Fu, X. G., Wang, J. J. & Du, B. W. 2008. Discovery of middle- and high- grade metamorphic rocks in the central Qiangtang basin, Tibet, China. Geological Bulletin of China 27, 351–5 (in Chinese with English abstract).Google Scholar
Tan, F. W., Wang, J., Fu, X. G., Chen, M. & Du, B. W. 2009. U–Pb zircon SHRIMP age of metamorphic rocks from the basement of the Qiangtang basin, and its geological significance. Acta Petrologica Sinica 25, 139–46 (in Chinese with English abstract).Google Scholar
Turner, C. C., Meet, J. G., Pandit, M. K. & Kamenov, G. D. 2014. A detrital zircon U–Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: implications for basin evolution and paleogeography. Gondwana Research 26, 348–64.Google Scholar
Wang, L. Q., Pan, G. T., Li, C., Dong, Y. S., Zhu, D. C., Yuan, S. H. & Zhu, T. X. 2008. SHRIMP U–Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet–considering the evolvement of Proto- and Paleo-Tethys. Geological Bulletin of China 27, 2045–56 (in Chinese with English abstract).Google Scholar
Wang, L. Q., Pan, G. T., Zhu, D. C., Zhu, T. X., Lin, S. L. & Li, Z. L. 2006. 40Ar/39Ar ages of the metamorphic rocks and basalts in Erou area of Shuanghu, northern Xizang and their significance. Earth Science Frontiers 13, 221–32 (in Chinese with English abstract).Google Scholar
Wang, G. Z. & Wang, C. S. 2001. The disintegration and time set of the metamorphic rock series of Qiangtang basement, Tibet. Science in China (Series D) 31, 7782 (in Chinese with English abstract).Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 19, 123.CrossRefGoogle Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–35.Google Scholar
Wu, Y. W. 2013. The evolution record of Longmuco–Shuanghu–Lancang ocean–Cambrian–Permian ophiolites. Ph.D. thesis, The College of Earth Sciences, Jilin University, Changchun, China. Published thesis (in Chinese with English abstract).Google Scholar
Wu, Y. W., Li, C., Dong, Y. S., Xie, C. M. & Hu, P. Y. 2009. Petrological characteristics of Taoxinghu Early Paleozoic ophiolite in central Qiangtang, northern Tibet, China. Geological Bulletin of China 28, 1290–6 (in Chinese with English abstract).Google Scholar
Wu, Y. W., Li, C., Xie, C. M., Wang, M. & Hu, P. Y. 2010. Petrology and geochronology of Guoganjianianshan ophiolite in central Qiangtang, Qinghai–Tibet Plateau, China. Geological Bulletin of China 29, 1773–80 (in Chinese with English abstract).Google Scholar
Wu, Y. B. & Zheng, Y. F. 2004. Genesis of zircon and its constraints on interpretation of U–Pb age. China Science Bulletin 49, 1554–69.Google Scholar
Xu, Z. Q., Yang, J. S., Liang, F. H., Qi, X. X., Liu, F. L., Zeng, L. S., Liu, D. Y., Li, H. B., Wu, C. L., Shi, R. D. & Chen, S. Y. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: inference from SHRIMP U–Pb zircon ages. Acta Petrologica Sinica 21, 112 (in Chinese with English abstract).Google Scholar
Yang, Y., Zhao, Z. B., Yuan, T. Y., Liu, Y. & Li, C. Y. 2014. Ordovician parallel unconformity in Qiangtang terrane, northern Tibet: implication to Early Paleozoic evolution of northern Tibetan regions. Acta Petrologica Sinica 30, 2381–92 (in Chinese with English abstract).Google Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Günther, D. & Wu, F. Y. 2004. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research 28, 353–70.CrossRefGoogle Scholar
Zhai, Q. G., Li, C., Cheng, L. R. & Zhang, Y. C. 2004. Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geological Bulletin of China 23, 1228–30 (in Chinese with English abstract).Google Scholar
Zhai, Q. G., Li, C. & Huang, X. P. 2006. Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet, China, and its tectonic significance. Geological Bulletin of China 25, 1419–27 (in Chinese with English abstract).Google Scholar
Zhai, Q. G., Li, C. & Huang, X. P. 2007. The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of meta-basites in Guoganjianian. Science in China (Series D: Earth Sciences) 37, 866–72.Google Scholar
Zhang, Z. M., Schertl, H. P., Wang, J. L., Shen, K. & Liou, J. G. 2009. Source of coesite inclusions within inherited magmatic zircon from Sulu UHP rocks, eastern China, and their bearing for fluid-rock interaction and SHRIMP dating. Journal of Metamorphic Geology 27, 317–33.Google Scholar
Zhang, Y. C., Yuan, T. X. & Zhai, Q. G. 2009. A preliminary report of the field trip on the Carboniferous–Permian sequences in the north and south of the Longmu Co–Shuanghu suture zone, Northern Tibet in May and June. Permophiles 53, 57.Google Scholar
Zhou, Z. G., Liu, W. C. & Liang, D. Y. 2004. Discovery of the Ordovician and its basal conglomerate in the Kangmar area, southern Tibet: with a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas. Regional Geology of China 23, 655–63 (in Chinese with English abstract).Google Scholar
Zhu, T. X., Wang, A. H., Zou, G. F. & Feng, X. T. 2003. The new discovery of basal conglomerate of sedimentary cover in Himalayan district. Geological Bulletin of China 22, 367–8 (in Chinese with English abstract).Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Hou, Z. Q. & Mo, X. X. 2013. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Research 23, 1429–54.CrossRefGoogle Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y. & Mo, X. X. 2011. Lhasa Terrane in southern Tibet came from Australia. Geology 39, 727–30.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Wang, Q., Ji, W. H., Dong, G. C., Sui, Q. L., Liu, Y. S., Yuan, H. L. & Mo, X. X. 2012a. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean–type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology 328, 290308.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Wang, Q., Yildirim, D., Dong, G. C. & Mo, X. X. 2012b. Origin and Paleozoic tectonic evolution of the Lhasa Terrane. Geological Journal of China Universities 18, 115.Google Scholar
Supplementary material: File

Liu supplementary material S1

Supplementary Figure

Download Liu supplementary material S1(File)
File 1.7 MB
Supplementary material: File

Liu supplementary material S2

Supplementary Table

Download Liu supplementary material S2(File)
File 56.1 KB
Supplementary material: File

Liu supplementary material S3

Supplementary Table

Download Liu supplementary material S3(File)
File 35.1 KB
Supplementary material: File

Liu supplementary material S4

Supplementary Table

Download Liu supplementary material S4(File)
File 52.3 KB