Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:37:27.643Z Has data issue: false hasContentIssue false

A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England

Published online by Cambridge University Press:  05 October 2009

KATE LITTLER*
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
STEPHEN P. HESSELBO
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
HUGH C. JENKYNS
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
*
Author for correspondence: kate.littler@ucl.ac.uk

Abstract

A perturbation in the carbon-isotope record at the time of the Pliensbachian–Toarcian boundary (~ 184 Ma) in the Early Jurassic is reported, based on new data from Yorkshire, England. Two sharp δ13Corg negative excursions, each with a magnitude of ~ −2.5 ‰ and reaching minimum values of −28.5 ‰, are recorded in the bulk organic-matter record in sediments of latest Pliensbachian to earliest Toarcian age. A similar pattern of negative carbon-isotope excursions has been observed at the stage boundary in the SW European section at Peniche, Portugal in δ13Ccarbonate, δ13Cwood and δ13Cbrachiopod records. The isotopic excursion is of interest when considering the genesis and development of the later Toarcian Oceanic Anoxic Event (OAE), as well as the second-order global extinction event that spans the stage boundary. Furthermore, the isotope excursion potentially provides a chemostratigraphic marker for recognition of the stage boundary, which is currently achieved on the basis of different ammonite faunas in the NW European and Tethyan realms.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. & Fürsich, F. T. 2000. Mass origination versus mass extinction: the biological contribution to the Pliensbachian–Toarcian extinction event. Journal of the Geological Society, London 157, 5560.CrossRefGoogle Scholar
Arens, N. C. & Jahren, A. H. 2000. Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary Boundary: Evidence from terrestrial sediments. Palaios 15, 314–22.2.0.CO;2>CrossRefGoogle Scholar
Bailey, T. R., Rosenthal, Y., McArthur, J. M., Van de Schootbrugge, B. & Thirlwall, M. F. 2003. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event, Earth and Planetary Science Letters 212, 307–20.Google Scholar
Beerling, D. J., Lomas, M. R. & Gröcke, D. R. 2002. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. American Journal of Science 302, 2849.CrossRefGoogle Scholar
Bjerrum, C. J., Surlyk, F., Callomon, J. H. & Slingerland, R. L. 2001. Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway. Paleoceanography 16, 390404.Google Scholar
Bowden, S. A., Farrimond, P., Snape, C. E. & Love, G. D. 2006. Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Organic Geochemistry 37, 369–83.Google Scholar
Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G.R., Kelly, D. C., Koch, P. L., Kump, L. R., Meng, J., Sloan, L. C., Thomas, E., Wing, S. L. & Zachos, J. C. 2006. Eocene hyperthermal event offers insight into greenhouse warming. EOS, Transactions of the American Geophysical Union 87, 165–9.Google Scholar
Cecca, F. & Macchioni, F. 2004. The two Early Toarcian (Early Jurassic) extinction events in ammonoids. Lethaia 37, 3556.CrossRefGoogle Scholar
Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–60.Google Scholar
Cohen, A. S., Coe, A. L. & Kemp, D. B. 2007. The Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. Journal of the Geological Society 164, 10931108.Google Scholar
Deines, P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth Science Reviews 58, 247–78.Google Scholar
Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–71.Google Scholar
Dickens, G. R. 2000. Methane oxidation during the Late Palaeocene Thermal Maximum. Bulletin de la Société géologique de France 171, 3749.Google Scholar
Duarte, L. V. 1997. Facies analysis and sequential evolution of the Toarcian–Lower Aalenian series in the Lusitanian Basin (Portugal). Communicações do Instituto Geológico e Mineiro 83, 6594.Google Scholar
Duarte, L. V., Perilli, N., Dino, R., Rodrigues, R. & Paredes, R. 2004. Lower to Middle Toarcian from the Coimbra region (Lusitanian Basin, Portugal): sequence stratigraphy, calcareous nannofossils and stable isotope evolution. Rivista Italiana di Paleontologia e Stratigrafia 110, 115–27.Google Scholar
Elmi, P. 2006. Pliensbachian/Toarcian boundary: the proposed GSSP of Peniche (Portugal). Volumina Jurassica 4, 516.Google Scholar
Gómez, J. J., Goy, A. & Canales, M. L. 2008. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 2858.Google Scholar
Gröcke, D. R., Rimmer, S. M., Yoksoulian, L. E., Cairncross, B., Tsikos, H. & van Hunen, J. 2009. No evidence for thermogenic methane release in coal from the Karoo-Ferrar large igneous province. Earth and Planetary Science Letters 277, 204–12.Google Scholar
Hallam, A. 1967. An environmental study of the upper Domerian and lower Toarcian in Great Britain. Philosophical Transactions of the Royal Society of London, Series B 252, 393445.Google Scholar
Hallam, A. 1981. A revised sea-level curve for the early Jurassic. Journal of the Geological Society, London 138, 735–43.Google Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian extinction events. Nature 319, 765–8.Google Scholar
Hallam, A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to early Jurassic). Journal of the Geological Society, London 154, 773–9.Google Scholar
Hansen, H. J. 2006. Stable isotopes from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92, 105–16.Google Scholar
Harries, P. J. & Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 3966.Google Scholar
Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M & Hesselbo, S. P. 2009. Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth and Planetary Sciences Letters 277, 193203.Google Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–5.Google ScholarPubMed
Hesselbo, S. P. & Jenkyns, H. C. 1995. A comparison of the Hettangian to Bajocian succesions of Dorset and Yorkshire. In Field Geology of the British Jurassic (ed. Taylor, P. D.), pp. 105–50. Geological Society of London.Google Scholar
Hesselbo, S. P. & Jenkyns, H. C. 1998. British Lower Jurassic sequence stratigraphy. In Mesozoic–Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P. C., Hardenbol, J., Jacquin, T., Farley, M. & Vail, P. R.), pp. 561–81. Society for Sedimentary Geology (SEPM), Special Publication no. 60.Google Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., Oliveira, L. C. V. 2007. Carbon isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.Google Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology 30, 251–4.Google Scholar
Higgins, J. A. & Schrag, D. P. 2006. Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters 245, 523–37.Google Scholar
Howard, A. S. 1985. Lithostratigraphy of the Staithes Sandstone and Cleveland Ironstone Formations (Lower Jurassic) of north-east Yorkshire. Proceedings of the Yorkshire Geological Society 45, 261–75.Google Scholar
Howarth, M. K. 1955. Domerian of the Yorkshire coast. Proceedings of The Yorkshire Geological Society 30, 147–75.Google Scholar
Howarth, M. K. 1973. The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire coast. Bulletin of the British Museum 24, 253–77.Google Scholar
Howarth, M. K. 1991. The Ammonite family Hildoceratidae in the Lower Jurassic of Britain. Monograph of the Palaeontographical Society 1, 1106; 2, 107–200.Google Scholar
Jenkyns, H. C. 1985. The Early Toarcian and Cenomanian–Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74, 505–18.Google Scholar
Jenkyns, H. C. 1988. The Early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288, 101–51.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London, Series A 361, 18851916.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. & Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87106.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1997. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687706.Google Scholar
Jenkyns, H. C., Gröcke, D. R. & Hesselbo, S. P. 2001. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16, 593603.Google Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London 159, 351–78.Google Scholar
Jones, C. E., Jenkyns, H. C., Coe, A. L. & Hesselbo, S. P. 1994. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochimica et Cosmochimica Acta 58, 3061–74.Google Scholar
Jones, C. E. & Jenkyns, H. C. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science 301, 112–49.Google Scholar
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Tshoso, G., Watkeys, M. K. & Le Gall, B. 2005. Karoo large igneous province: Brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar age data. Geology 33, 745–8.Google Scholar
Jourdan, F., Féraud, G., Bertrand, H., Watkeys, M. K. & Renne, P. R. 2008. The 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian-Toarcian climate change, Geochemistry, Geophysics, Geosystems 9, Q06009, doi:10.1029/2008GC001994.CrossRefGoogle Scholar
Katz, M. E., Cramer, B. S., Mountain, G. S., Katz, S. & Miller, K. G. 2001. Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 549–62.Google Scholar
Keller, G. & Lindinger, M. 1989. Stable isotope, TOC and CaCO3 record across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 73, 243–65.CrossRefGoogle Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–9.Google Scholar
Kennett, J. P. & Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–9.Google Scholar
Küspert, W. 1982. Environmental changes during oil shale deposition as deduced from stable isotope ratios. In Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.), pp. 482501. Berlin: Springer.Google Scholar
Little, C. T. S. & Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–8.Google Scholar
Macchioni, F. & Cecca, F. 2002. Biodiversity and biogeography of middle–late Liassic ammonoids: implications for the Early Toarcian mass extinction. Geobios 35, 165–75.Google Scholar
Mattey, D. P. 1991. Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochimica et Cosmochimica Acta 55, 3467–73.CrossRefGoogle Scholar
McArthur, J. M., Cohen, A. S., Coe, A. L., Kemp, D. B., Bailey, R. J. & Smith, D. G. 2008. Discussion on the Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental change, causes and consequences. Journal of the Geological Society, London 165, 875–80.Google Scholar
McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters 179, 269–85.Google Scholar
McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–82.Google Scholar
Mouterde, R. 1955. Le lias de Peniche. Comuniçõcoes dos Servicos Geológicos de Portugal 36, 87–115.Google Scholar
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J., Dickens, G. R. & the Expedition 302 scientists. 2006. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–5.Google Scholar
Page, K. N. 2004. A sequence of biohorizons for the Subboreal Province lower Toarcian in northern Britain and their correlation with a Submediterranean Standard. Rivista Italiana di Paleontologia e Stratigrafia 110, 109–14.Google Scholar
Pálfy, J. & Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–50.Google Scholar
Pálfy, J., Smith, P. L. & Mortensen, J. K. 2002. Dating the end-Triassic and Early Jurassic mass extinctions, correlative large igneous provinces, and isotopic events. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K. G.), pp. 523–32. Geological Society of America, Special Paper no. 356.Google Scholar
Pancost, R. D., Crawford, N., Magness, S., Turner, A., Jenkyns, H. C. & Maxwell, J. R. 2004. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. Journal of the Geological Society, London 161, 353–64.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the End-Permian extinction. Science 305, 506–9.Google Scholar
Rakus, M. 1995. The first appearance of dactylioceratids in the western Carpathians. Slovak Geological Magazine 2, 165–70.Google Scholar
Riccardi, A., Kump, L. R., Arthur, M. A. & D'Hondt, S. 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 7381.Google Scholar
Röhl, J. H., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 2752.Google Scholar
Rosales, I., Quesada, S. & Robles, S. 2004 a. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque–Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 253–75.Google Scholar
Rosales, I., Quesada, S. & Robles, S. 2004 b. Elemental and oxygen isotope composition of Early Jurassic belemnites: salinity vs. temperature signals. Journal of Sedimentary Research 74, 342–54.Google Scholar
Rosales, I., Quesada, S. & Robles, S. 2006. Geochemical arguments for identifying second-order sea-level changes in hemipelagic carbonate ramp deposits. Terra Nova 18, 233–40.Google Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Baudin, F., Parisi, G. & Masetti, D. 2009. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56, 1307–28.Google Scholar
Sælen, G. 1989. Diagenesis and construction of the belemnite rostrum. Palaeontology 32, 765–98.Google Scholar
Sælen, G., Tyson, R. V., Talbot, M. R. & Telnæs, N. 1998. Evidence of recycling of isotopically light CO2 (aq) in stratified black shale basins; Contrasts between the Whitby Mudstone and Kimmeridge Clay formations, United Kingdom. Geology 26, 747–50.2.3.CO;2>CrossRefGoogle Scholar
Schouten, S., Van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. & Sinninghe Damsté, J. S. 2000. Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon. American Journal of Science 300, 122.Google Scholar
Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J. & Thomas, E. 2007. The Palaeocene-Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In Deep time perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, J. & Schmidt, D. N.), pp. 323–49. The Micropalaeontological Society, Special Publications, The Geological Society, London.Google Scholar
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J., Dickens, G. R., Huber, M., Reichart, G., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K. & the Expedition 302 Scientists. 2006. 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–13.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. 2008 a. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202, doi:10.1029/2007PA001459.Google Scholar
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L. V. & Mailliot, S. 2008 b. Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes. Earth and Planetary Science Letters 267, 666–79.Google Scholar
Svensen, H., Planke, S., Chevallier, L., Malthe-Sørenssen, A., Corfu, F. & Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256, 554–66.Google Scholar
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E. & Bohaty, S. 2002. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30, 1067–70.Google Scholar
Van Breugel, Y., Baas, M., Schouten, S., Mattioli, E. & Sinninghe Damsté, J. S. 2006 a. Isorenieratane record in black shales from the Paris Basin, France: Constraints on recycling of respired CO2 as a mechanism for negative carbon isotope shifts during the Toarcian oceanic anoxic event. Paleoceanography 21, PA4220, doi:10.1029/2006PA001305.Google Scholar
Van Breugel, Y., Schouten, S., Paetzel, M. & Sinninghe Damsté, J. S. 2006 b. Seasonal variation in the stable carbon isotopic composition of algal lipids in a shallow anoxic fjord: Evaluation of the effect of recycling of respired CO2 on the δ13C of organic matter. American Journal of Science 306, 367–87.Google Scholar
Van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D. & Miller, K. G. 2005. Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records. Paleoceanography 20, PA3008, doi:10.1029/2004PA001102.Google Scholar
Wignall, P. B. 1994. Black Shales. Geology and Geophysics Monographs, 30. Oxford: Oxford University Press, 130 pp.Google Scholar
Wignall, P. B., Newton, R. J. & Little, C. T. S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. American Journal of Science 305, 1014–32.Google Scholar
Wignall, P. B., McArthur, J. M., Little, C. T. S. & Hallam, A. 2006. Methane release in the Early Jurassic period. Nature 441, p. E5.Google Scholar
Wignall, P. B. & Bond, P. G. 2008. The end Triassic and Early Jurassic extinction records in the British Isles. Proceedings of the Geologists Association 119, 7384.Google Scholar
Woodfine, R. G., Jenkyns, H. C., Sarti, M., Baroncini, F. & Violante, C. 2008. The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: environmental change and differential subsidence. Sedimentology 55, 1011–28.CrossRefGoogle Scholar
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H. & Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene–Eocene thermal maximum. Science 308, 1611–15.Google Scholar
Zakharov, V. A., Shurygin, B. N., Il'ina, V. I. & Nikitenko, B. L. 2006. Pliensbachian–Toarcian Biotic Turnover in North Siberia and the Arctic Region. Stratigraphy and Geological Correlation 14, 399417.Google Scholar
Ziegler, P. A. 1988. Evolution of the Arctic–North Atlantic and the western Tethys, American Association of Petroleum Geologists Memoir 43, 198.Google Scholar
Supplementary material: File

Littler Supplementary Material

Appendix.doc

Download Littler Supplementary Material(File)
File 229.4 KB