Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:11:38.554Z Has data issue: false hasContentIssue false

Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy)

Published online by Cambridge University Press:  30 May 2016

DANIELE MASETTI*
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Polo scientifico-tecnologico, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
BILLY FIGUS
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Polo scientifico-tecnologico, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
HUGH C. JENKYNS
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
FILIPPO BARATTOLO
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli, Italy
EMANUELA MATTIOLI
Affiliation:
UMR CNRS 5276 LGL-TPE, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France
RENATO POSENATO
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Polo scientifico-tecnologico, Via Giuseppe Saragat 1, 44122 Ferrara, Italy
*
Author for correspondence: msd@unife.it

Abstract

Despite its global impact on ecosystems, the Triassic/Jurassic boundary event had only a modest effect on the carbonate depositional systems of the Southern Alps, whereas a fundamental reorganization of the same palaeogeographic area took place during the Sinemurian Age. This paper investigates whether or not the well-documented demise of Sinemurian carbonate platforms in the Tethyan region was a response to a global event by examination of carbon-isotope anomalies in successions of different facies that record this interval of time. A chemostratigraphic transect from Lake Garda up to the eastern Italian border is illustrated by four stratigraphic sections; high-resolution (20 cm over key intervals) chemostratigraphic sampling allowed detection of a major negative δ13C anomaly of ~ 1.5‰, preceded by a positive excursion, both in shallow- and deep-water successions, over the stratigraphical range of the ammonite genus Arnioceras. A comparison with sections from the UK suggests that the positive excursion belongs to the turneri Zone and the succeeding negative excursion falls within the obtusum Zone. In the deep-water Belluno Basin, the negative anomaly occurs in a biogenic chert-rich unit recording the onset of mesotrophic conditions in the basin. In the platform-carbonate successions, this major negative carbon-isotope excursion is developed within a calcarenitic unit corresponding to the lowest occurrence of the foraminifer Paleomayncina termieri. This evidence for deepening and transgression across the carbonate platform suggests pre-conditioning for drowning. Hence, rather than tectonic subsidence alone, environmental factors may have aided the demise of Tethyan carbonate platforms during the Early Jurassic Sinemurian Age.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avanzini, M., Frisia, S., Keppens, E. & Van den Driessche, K. 1997. A dinosaur tracksite in an Early Jurassic tidal flat in Northern Italy: palaeoenvironmental reconstruction from sedimentology and geochemistry. Palaios 12, 538–51.CrossRefGoogle Scholar
Barattolo, F. & Bigozzi, A. 1996. Dasycladaleans and depositional environments of the Upper Triassic–Liassic carbonate platform of the Gran Sasso (Central Apennines, Italy). Facies 35, 163208.Google Scholar
Barattolo, F., Granier, B., Romano, R. & Ferré, B. 2008. Petrascula iberica (Dragastan & Trappe), Tersella genotii Barattolo & Bigozzi, and the relationships of club-shaped dasycladalean algae during Late Triassic–Early Jurassic times. Geologia Croatica 61, 159–76.CrossRefGoogle Scholar
Barattolo, F. & Romano, R. 2005. Shallow carbonate platform bioevents during the Upper Triassic–Lower Jurassic: an evolutive interpretation. Bollettino della Società Geologica Italiana 124, 123–42.Google Scholar
Bassi, D., Boomer, I., Fugagnoli, A., Loriga, C., Posenato, R. & Whatley, R. C. 1999. Faunal assemblages and palaeoenvironment of shallow water black shales in the Tonezza area (Calcari Grigi, Early Jurassic, Southern Alps). Annali dell'Università degli Studi di Ferrara, Sezione di Scienze della Terra 8, 116.Google Scholar
Beccarelli-Bauck, L. 1988. Unter-bismitteljurassische Karbonatformationen am Westrand der Trento-Platform (Südalpen, Norditalien). Münchner Geowissenschaftliche Abhandlung 13, 186.Google Scholar
Bellanca, A., Masetti, D., Neri, R. & Venezia, F. 1999. Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, northern Italy. Journal of Sedimentary Research 69, 466–76.Google Scholar
Berger, S. & Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Stuttgart: Georg Thieme Verlag, 247 pp.Google Scholar
Bernoulli, D. & Jenkyns, H. C. 1974. Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation (eds Dott, R. H. Jr & Shaver, R. H.), pp. 129–60. SEPM Special Publication no. 19.CrossRefGoogle Scholar
Bertotti, G., Picotti, V., Bernoulli, D. & Castellarin, A. 1993. From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology 86, 5376.Google Scholar
Bill, M., O'Dogherty, L., Guex, J., Baumgartner, P. O. & Masson, H. 2001. Radiolarite ages in Alpine–Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys–Atlantic connection. Geological Society of America Bulletin 113, 129–43.Google Scholar
Bosellini, A. & Broglio Loriga, C. 1971. I “Calcari Grigi” di Rotzo (Giurassico inferiore, Altopiano di Asiago) e loro inquadramento nella paleogeografia e nella evoluzione tettonico-sedimentaria delle Prealpi venete. Annali dell'Università di Ferrara (Sezione Scienze Geologiche e Paleontologiche) 5, 161.Google Scholar
Bosellini, A. & Masetti, D. 1972. Ambiente e dinamica deposizionale del Calcare del Vajont (Giurassico medio, Prealpi Bellunesi e Friulane. Annali dell'Università di Ferrara (Sezione Scienze Geologiche e Paleontologiche) 5, 87100.Google Scholar
Bosellini, A., Masetti, D. & Sarti, M. 1981. A Jurassic “Tongue of the Ocean” infilled with oolitic sands: the Belluno Trough, Venetian Alps, Italy. Marine Geology 44, 5595.Google Scholar
Bown, P. R. 1987. Taxonomy, evolution and biostratigraphy of Late Triassic–Early Jurassic calcareous nannofossils. Special Papers in Palaeontology 38, 1118.Google Scholar
Bown, P. R. & Young, J. R. 1998. Techniques. In Calcareous Nannoplankton Biostratigraphy (ed. Bown, P. R.), pp. 1628. British Micropalaeontological Press.CrossRefGoogle Scholar
Chiocchini, M., Chiocchini, R. A., Didaskalou, P. & Potetti, M. 2008. Ricerche micropaleontologiche e biostratigrafiche sul Mesozoico della piattaforma carbonatica laziale-abruzzese (Italia centrale). Memorie descrittive Carta Geologica Italiana 84, 5170.Google Scholar
Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari, V. & Potetti, M. 1994. Biostratigrafia a foraminiferi, dasicladali e calpionelle delle successioni carbonatiche mesozoiche dell'Appennino centrale (Italia). In Biostratigrafia dell'Italia Centrale (ed. Mancinelli, A.), pp. 9128. Studi Geologici Camerti, Volume Speciale.Google Scholar
Claps, M., Erba, E., Masetti, D. & Melchiorri, F. 1995. Milankovitch-type cycles recorded in Toarcian black-shales from the Belluno Trough (Southern Alps, Italy). Memorie Scienze Geologiche Padova 47, 179–88.Google Scholar
Cobianchi, M. 2002. I nannofossili calcarei del Giurassico medio e superiore del Bacino di Belluno (Alpi Meridionali). Atti Ticinensi di Scienze della Terra 43, 324.Google Scholar
Courtillot, V. E. & Renne, P. R. 2003. On the ages of flood basalt events. [Sur l'ages des trappes basaltiques.] Comptes Rendus Geoscience 335, 113–40.Google Scholar
Cuvillier, J., Foury, G. & Pignatti Morano, A. 1968. Foraminiferes noveaux du Jurassique superieur du Val Cellina (Frioul Occidental, Italie). Geologica Romana 7, 141–55.Google Scholar
D'Argenio, B., Pescatore, T. & Scandone, P. 1973. Schema geologico dell'Appennino meridionale (Campania e Lucania). Quaderni Accademia Nazionale dei Lincei, Convegno sul tema: Moderne vedute sulla geologia dell'Appennino 183, 4972.Google Scholar
Davey, S. D. & Jenkyns, H. C. 1999. Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic events (Cenomanian–Turonian of the peri-Adriatic carbonate platform, Croatia). Eclogae Geologicae Helvetiae 92, 163–70.Google Scholar
Decarlis, A. & Lualdi, A. 2010. Synrift sedimentation on the northern Tethys margin: an example from the Ligurian Alps (Upper Triassic to Lower Cretaceous, Prepiedmont domain, Italy). International Journal of Earth Sciences 100, 1589–604.Google Scholar
De Castro, P. 1991. Jurassic. In 5th International Symposium on Fossil Algae. Capri, 7–12 April 1991. Field-Trip Guide Book (eds Barattolo, F., De Castro, P. & Parente, M.).Google Scholar
Dommergues, J. L., Ferretti, A. & Meister, C. 1994. Les faunes d'ammonites du Sinémurien de l'Apennin Central (Marches et Toscane, Italie). Bollettino della Società Paleontologica Italiana 33 (1), 1342.Google Scholar
Fantoni, R. & Scotti, P. 2003. Thermal record of the Mesozoic extensional tectonics in the Southern Alps. Atti Ticinensi Scienze della Terra 9, 96101.Google Scholar
Föllmi, K. B., Weissert, H., Bisping, M. & Funk, H. 1994. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of American Bulletin 106, 729–46.Google Scholar
Franceschi, M., Dal Corso, J., Posenato, R., Roghi, G., Masetti, D. & Jenkyns, H.C. 2014. Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: insights from the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 255–63.Google Scholar
Fugagnoli, A. 2004. Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeography, Palaeoclimatology, Palaeoecology 205, 111–30.Google Scholar
Gaetani, M. 1975. Jurassic stratigraphy of the Southern Alps: a review. In Geology of Italy (ed. Squyres, C.), pp. 377402. Tripoli: The Earth Sciences Society of the Libyan Arab Republic.Google Scholar
Gradstein, F. M., Ogg, J. G. & Schmitz, M. D. (eds) 2012. The Geologic Time Scale 2012. Boston: Elsevier.Google Scholar
Grötsch, J., Billing, I. & Vahrenkamp, V. C. 1998. Carbon isotope stratigraphy in shallow-water carbonates: implications for Cretaceous black-shale deposition. Sedimentology 45, 623–34.CrossRefGoogle Scholar
Hallock, P. & Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–98.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Sea-Level Changes: An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Posamentier, H. W., Van Wagoner, J. C., Ross, C. A. & Kendall, C. G. St. C.), pp. 71108. SEPM Special Publication no. 42.Google Scholar
Hermoso, M., Minoletti, F., Rickaby, R. E. M., Hesselbo, S. P., Baudin, F. & Jenkyns, H. C. 2012. Dynamics of a stepped carbon-isotope excursion: ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters 319–320, 4554.Google Scholar
Hesselbo, S. P. & Jenkyns, H. C. 1998. Sequence stratigraphy of the Lower Jurassic of the British Isles. In Mesozoic and Cenozoic Sequence Stratigraphy of Europe (eds de Graciansky, P. C., Hardenbol, J., Jaquin, T., Vail, P. R. & Farley, M. B.), 561–81. SEPM Special Publication no. 60.Google Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.Google Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, London 133, 637–60.Google Scholar
Jenkyns, H. C. 1971a. The genesis of condensed sequences in the Tethyan Jurassic. Lethaia 4, 327352.Google Scholar
Jenkyns, H. C. 1971b. Speculations on the genesis of crinoidal limestones in the Tethyan Jurassic. Geologische Rundschau 60, 471–88.CrossRefGoogle Scholar
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Sciences 288, 101–51.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London, Series A 361, 18851916.Google Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London 159, 351–78.CrossRefGoogle Scholar
Jenkyns, H. C., Sarti, M., Masetti, D. & Howarth, M. K. 1985. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, Southern Alps, Italy. Eclogae Geologicae Helveticae 78, 299311.Google Scholar
Jenkyns, H. C. & Torrens, H. S. 1971. Palaeogeographic evolution of Jurassic seamounts in Western Sicily. In Colloque du Jurassique méditerranéen (ed. Végh-Neubrandt, E.), pp. 91104. Annales Instituti Geologici Publici Hungarici 54/2.Google Scholar
Jenkyns, H. C. & Weedon, G. P. 2013. Chemostratigraphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset and palaeoenvironmental implications. Newsletters on Stratigraphy 46, 121.Google Scholar
Jones, C. E., Jenkyns, H. C. & Hesselbo, S. P. 1994. Strontium isotopes in Early Jurassic seawater. Geochimica Cosmochimica Acta 58, 1285–301.Google Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–99.Google Scholar
Korte, C. & Hesselbo, S. P. 2011. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during Early Jurassic. Paleoceanography 26, PA4219, doi: 10.1029/2011PA002160.Google Scholar
Luciani, V., Cobianchi, M. & Jenkyns, H. C. 2004. Albian high-resolution biostratigraphy and isotope stratigraphy: the Coppa della Nuvola pelagic succession of the Gargano Promontory (Southern Italy). Eclogae Geologicae Helvetiae 97, 7792.Google Scholar
Marino, M. & Santantonio, M. 2010. Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sedimentary Geology 225, 116–37.CrossRefGoogle Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.Google Scholar
Martire, L. 2007. Rosso Ammonitico Veronese. In Carta Geologica d'Italia 1:50.000 – Catalogo delle Formazioni, Unità Tradizionali (1), vol. 7 (VI) (eds Cita, M. B., Abbate, E., Balini, M., Conti, M. A., Falorni, P., Germani, D., Groppelli, G., Manetti, P. & Petti, F. M.), pp. 98100. APAT, Dipartimento Difesa del Suolo, Servizio Geologico d'Italia, Quaderni del Servizio Geologico d'Italia, Serie III.Google Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G. & De Min, A. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–8.Google Scholar
Masetti, D. & Bianchin, G. 1987. Geologia del Gruppo dello Schiara (Dolomiti Bellunesi): suo inquadramento nell'evoluzione giurassica del margine orientale della piattaforma di Trento. Memorie di Scienze Geologiche Padova 39, 187212. Google Scholar
Masetti, D. & Bottoni, A. 1975. L'Encrinite di Fanes e suo inquadramento nella paleogeografia giurassica delle Dolomiti centro-occidentali. Rivista Italiana di Paleontologia e Stratigrafia 84, 169–86.Google Scholar
Masetti, D., Claps, M., Giacometti, A., Lodi, P. & Pignatti, P. 1998. I Calcari Grigi della Piattaforma di Trento (Lias inferiore e medio, Prealpi Venete). Atti Ticinensi di Scienze della Terra 40, 139–83.Google Scholar
Masetti, D., Fantoni, R., Romano, R., Sartorio, D. & Trevisani, E. 2012. Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern Southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data. American Association of Petroleum Geologists Bulletin 96, 2065–89.Google Scholar
Massari, F. 1981. Cryptalgal fabrics in the Rosso Ammonitico sequences in the Venetian Alps. In Rosso Ammonitico Symposium Proceedings (eds Farinacci, A. & Elmi, S.), pp. 453–69. Rome: Edizioni Tecnoscienza.Google Scholar
Meister, C., Schirolli, P. & Dommergues, J. L. 2009. Sinemurian to lowermost Toarcian ammonites of the Brescian Prealps (Southern Alps, Italy): preliminary biostratigraphical framework and correlations. Volumina Jurassica 7, 918.Google Scholar
Merino-Tomé, O., Della Porta, G., Kenter, J. A. M., Verwerk, K., Harris, P. M., Adams, E. W., Playton, T. & Corrochano, D. 2012. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production. Sedimentology 59, 118–55.Google Scholar
Page, A. 2010. Stratigraphic framework. In Fossils from the Lower Lias of the Dorset Coast (eds Lord, R. & Davis, P. G.), pp. 3353. Palaeontological Association Field Guides to Fossils no. 13.Google Scholar
Piano, C. & Carulli, G. B. 2002. Sedimentazione e tettonica giurassica nella successione del gruppo del Monte Verzegnis (Prealpi Carniche nord-orientali). In Atti dell’80a Riunione Estiva della Società Geologica Italiana (eds Carulli, G. B. & Ponton, M.). Memorie della Società Geologica Italiana 57, 115–22.Google Scholar
Porter, S. J., Smith, P., Caruthers, A., Houa, P., Gröckeb, D. R. & Selbyb, D. 2014. New high resolution geochemistry of Lower Jurassic marine sections in western North America: a global positive carbon isotope excursion in the Sinemurian. Earth and Planetary Science Letters 397, 1931.Google Scholar
Posenato, R. & Masetti, D. 2012. Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 361–362, 113.Google Scholar
Riding, J. B., Leng, M. J., Kender, S., Hesselbo, S. P. & Feist-Burkhardt, S. 2012. Isotopic and palynological evidence for a new Early Jurassic environmental perturbation. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 1627.Google Scholar
Romano, R. & Barattolo, F. 2009. Note on Sestrosphaera liasina (Pia, 1920) from the Lowermost Jurassic of Malga Mandrielle (type-locality, Southern Alps – Italy). Geobios 42, 101–15.Google Scholar
Romano, R., Barattolo, F. & Masetti, D. 2005. Biostratigraphic evidence of the middle Liassic hiatus in the Foza Section (Eastern sector of the Trento Platform, Calcari Grigi Formation, Venetian Prealps). Bollettino della Società Geologica Italiana 124, 301–12.Google Scholar
Ronchi, P., Lottaroli, F. & Ricchiuto, T. 2000. Sedimentary and diagenetic aspects of the Liassic Inici Fm. and its stratigraphic context (Sicily Channel, Italy). Memorie della Società Geologica Italiana 55, 261–9.Google Scholar
Roth, P. H. 1983. Calcareous nannofossils in mid-Cretaceous black shale cycles from the Atlantic and Pacific: effects of diagenesis. Eos 64, 733–4.Google Scholar
Ruiz-Ortiz, P. A., Bosence, D. W. J., Rey, J., Nieto Castro, J. M. & Molina, J. M. 2004. Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Research 16, 235–57.Google Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Baudin, F., Parisi, G. & Masetti, D. 2009. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56, 1307–28.CrossRefGoogle Scholar
Sabatino, N., Vlahović, I., Jenkyns, H. C., Scopelliti, G., Neri, R., Prtoljan, B. & Velić, I. 2013. Carbon-isotope record and palaeoenvironmental changes during the early Toarcian anoxic event in shallow-marine carbonates of the Adriatic Carbonate Platform in Croatia. Geological Magazine 150, 1085–102.CrossRefGoogle Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305, 1922.CrossRefGoogle Scholar
Schirolli, P. 1997. La successione liassica nelle Prealpi Bresciane, Centro-Occidentali (Alpi Meridionali, Italia): stratigrafia, evoluzione paleogeografico-strutturale ed eventi connessi al rifting. Atti Ticinensi di Scienze della Terra 6, 5137.Google Scholar
Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology and Paleontology no. 8, 198 pp.Google Scholar
Schlager, W. & James, N. P. 1978. Low-magnesium calcite limestone forming at the deep-sea floor, Tongue of the Ocean, Bahamas. Sedimentology 25, 675702.Google Scholar
Scholle, P. & Arthur, M. A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64, 6787.Google Scholar
Septfontaine, M. 1984. Biozonation (à l'aide des Foraminifères imperforés) de la plate-forme interne carbonatée liasique du Haut Atlas (Maroc). Revue de Micropaléontologie 27, 209–29.Google Scholar
Septfontaine, M. 1985. Milieux de dépôts et Foraminifères (Lituolidés) de la plate-forme carbonatée du Lias moyen au Maroc. Revue de Micropaléontologie 28, 265–89.Google Scholar
Strasser, A. 1986. Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33, 711–28.CrossRefGoogle Scholar
Swart, P. K. 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. Proceeding of the National Academy of Sciences 105, 13741–45.CrossRefGoogle ScholarPubMed
Trecalli, A., Spangenberg, J., Adatte, T., Follmi, K. B. & Parente, M. 2012. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth and Planetary Science Letters 357–358, 214–25.Google Scholar
Valet, G. 1979. Approche paléoécologique du monde des Dasycladales à partir de l’écologie des forms actuelles. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 3/2, 859–66.Google Scholar
Velić, I. 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geologia Croatica 60, 1113.Google Scholar
Wendt, J. 1969. Die stratigraphisch-paläogeographische Entwicklung des Jura in Westsizilien. Geologische Rundschau 58, 735–55.Google Scholar
Wilkinson, B. H. & Given, R. K. 1986. Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. Journal of Geology 94, 321–33.Google Scholar
Wilmsen, M. & Neuweiler, F. 2008. Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 55, 773807.Google Scholar
Winterer, E. L. & Bosellini, A. 1981. Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. American Association of Petroleum Geologists Bulletin 65, 394421.Google Scholar
Woodfine, R. G., Jenkyns, H. C., Sarti, M., Baroncini, F. & Violante, C. 2008. The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: environmental change and differential subsidence. Sedimentology 55, 1011–28.Google Scholar
Zanferrari, A., Masetti, D., Monegato, G. & Poli, M. E. 2013. Geological Map and Explanatory Notes of the Italian Geological Map at the Scale 1:50.000: Sheet 049 “Gemona del Friuli”. ISPRA – Servizio Geologico d'Italia-Regione Autonoma Friuli Venezia Giulia, 262 pp.Google Scholar
Zhuravlev, A. Y. & Wood, R. A. 2009. Controls on carbonate mineralogy: global CO2 evolution and mass extinctions. Geology 37, 1123–6.Google Scholar