Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:34:52.510Z Has data issue: false hasContentIssue false

Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation

Published online by Cambridge University Press:  01 October 2015

PAUL B. WIGNALL*
Affiliation:
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
DAVID P. G. BOND
Affiliation:
Department of Geography, Environment and Earth Sciences, University of Hull, Hull, HU6 7RX, United Kingdom
YADONG SUN
Affiliation:
Geozentrum Nordbayen, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 470073, Hubei Province, P. R. China
STEPHEN E. GRASBY
Affiliation:
Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada Department of Geoscience, University of Calgary, 2500 University Dr. N.W., Calgary Alberta, T2N 1N4, Canada
BENOIT BEAUCHAMP
Affiliation:
Department of Geoscience, University of Calgary, 2500 University Dr. N.W., Calgary Alberta, T2N 1N4, Canada
MICHAEL M. JOACHIMSKI
Affiliation:
Geozentrum Nordbayen, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
DIERK P. G. BLOMEIER
Affiliation:
Millenia Stratigraphic Consultants, 35 Swansfield, Lechlade GL7 3SF, United Kingdom
*
Author for correspondence: p.wignall@see.leeds.ac.uk

Abstract

Lower Triassic marine strata in Spitsbergen accumulated on a mid-to-high latitude ramp in which high-energy foreshore and shoreface facies passed offshore into sheet sandstones of probable hyperpycnite origin. More distal facies include siltstones, shales and dolomitic limestones. Carbon isotope chemostratigraphy comparison allows improved age dating of the Boreal sections and shows a significant hiatus in the upper Spathian. Two major deepening events, in earliest Griesbachian and late Smithian time, are separated by shallowing-upwards trends that culminated in the Dienerian and Spathian substages. The redox record, revealed by changes in bioturbation, palaeoecology, pyrite framboid content and trace metal concentrations, shows anoxic phases alternating with intervals of better ventilation. Only Dienerian–early Smithian time witnessed persistent oxygenation that was sufficient to support a diverse benthic community. The most intensely anoxic, usually euxinic, conditions are best developed in offshore settings, but at times euxinia also developed in upper offshore settings where it is even recorded in hyperpycnite and storm-origin sandstone beds: an extraordinary facet of Spitsbergen's record. The euxinic phases do not track relative water depth changes. For example, the continuous shallowing upwards from the Griesbachian to lower Dienerian was witness to several euxinic phases separated by intervals of more oxic, bioturbated sediments. It is likely that the euxinia was controlled by climatic oscillations rather than intra-basinal factors. It remains to be seen if all the anoxic phases found in Spitsbergen are seen elsewhere, although the wide spread of anoxic facies in the Smithian/Spathian boundary interval is clearly a global event.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Shen, Y., Zhang, T., Lyons, T., Bates, S., Rowe, H. & Nguyen, T. K. T. 2008. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry, Geophysics, Geosystems 9, Q04025.Google Scholar
Algeo, T. J. & Twitchett, R. J. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–6.Google Scholar
Arnott, R. W. C. 1993. Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member, north-central Montana: evidence of combined flow sedimentation. Journal of Sedimentary Petrology 63, 488–94.Google Scholar
Beatty, T. W., Zonneveld, J.-P. & Henderson, C. M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36, 771–4.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2010. Pyrite framboid study of marine Permo-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122, 1265–79.Google Scholar
Dagis, A. A. 1984. Rannetriasovye konodonty severa Srednej Sibiri. (Early Triassic conodonts of northern Middle Siberia.) Trudy Akademija SSSR, Sibirskoe otdelenie Instituta Geologii i Geofiziki 554, 369.Google Scholar
Droser, M. L. & Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology 56, 558–9.Google Scholar
Dumas, S. & Arnott, R. W. C. 2006. Origin of hummocky and swaley cross-stratification – the controlling influence of unidirectional current and aggradation rate. Geology 34, 1073–6.CrossRefGoogle Scholar
Dustira, A. M., Wignall, P. B., Joachimski, M., Blomeier, D., Hartkopf-Fröder, C. & Bond, D. P. G. 2013. Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 303–13.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis. New York: Columbia University Press, 327 pp.Google Scholar
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H. & Vigran, J. O. 2007. Smithian–Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 23, 291–4.CrossRefGoogle Scholar
Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. 2013. Recurrent Early Triassic ocean anoxia. Geology 41, 175–8.Google Scholar
Hofmann, R., Buatois, L. A., MacNaughton, R. B. & Mangano, M. G. 2015. Loss of the sedimentary mixed layer as a result of the end-Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 428, 111.Google Scholar
Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H. & Hautmann, M. 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 216–26.Google Scholar
Horacek, M., Richoz, S., Brandner, R., Krystyn, L. & Spötl, C. 2007. Evidence for recurrent changes in Lower Triassic oceanic circulation in Tethys: the record from marine sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 355–69.Google Scholar
Isozaki, Y. 1994. Superanoxia across the Permo-Triassic boundary: recorded in accreted deep-sea pelagic chert in Japan. Memoir of the Canadian Society of Petroleum Geologists 17, 805–12.Google Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–8.Google Scholar
Jarochowska, E., Tonarová, P., Munnecke, A., Ferrová, L., Sklenář, J. & Vodrážková, A. S. 2013. An acid-free method of microfossil extraction from clay-rich lithologies using the surfactant Rewoquat. Palaeontologia Electronica 16, 7T; 16 pp.Google Scholar
Knaust, D. 2010. The end-Permian mass extinction and its aftermath on an equatorial carbonate platform: insights from ichnology. Terra Nova 22, 195202.Google Scholar
Macdonald, H. A., Peakall, J., Wignall, P. B. & Best, J. 2011. Sedimentation in deep-sea lobe elements: implications for the origin of thickening-upwards sequences. Journal of the Geological Society, London 168, 319–32.Google Scholar
Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302, 378–84.Google Scholar
Mørk, A., Elvebakk, G., Forsberg, A. W., Hounslow, M. W., Nakrem, H. A., Vigran, J. O. & Weitschat, W. 1999. The type section of the Vikinghøgda Formation: a new Lower Triassic unit in central and eastern Spitsbergen. Polar Research 18, 5182.Google Scholar
Mørk, A., Embry, A. F. & Weitschat, W. 1989. Triassic transgressive-regressive cycles in the Sverdrup Basin, Svalbard and the Barents Shelf. In Correlation in Hydrocarbon Exploration (ed. Collinson, J. D.), pp. 113–30. Norwegian Petroleum Society/Graham & Trotman.Google Scholar
Mørk, A., Knarud, R. & Worsley, D. 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In Arctic Geology and Geophysics (eds Embry, A. F. & Balkwill, H. R.), pp. 371–98. Canadian Society of Petroleum Geologists Memoir 8.Google Scholar
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J.-C. & Savoye, B. 2003. Marine hyperpycnal flows: initiation, behaviour and related deposits. A review. Marine and Petroleum Geology 20, 861–82.Google Scholar
Nakrem, H. A. & Mørk, A. 1991. New early Triassic Bryozoa (Trepostomata) from Spitsbergen, with some remarks on the stratigraphy of the investigated horizons. Geological Magazine 128, 129–40.Google Scholar
Orchard, M. J. 2008. Lower Triassic conodonts from the Canadian Arctic, their intercalibration with ammonoid-based stages and a comparison with other North American Olenekian faunas. Polar Research 27, 393412.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–9.Google Scholar
Plink-Björklund, P. & Steel, R. J. 2004. Initiation of turbidity currents: outcrop evidence of hyperpycnal flow turbidites. Sedimentary Geology 165, 2952.Google Scholar
Pruss, S. B., Fraiser, M. & Bottjer, D. J. 2004. Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology 32, 461–4.Google Scholar
Retallack, G. J., Veevers, J. J. & Morante, R. 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin 108, 195207.Google Scholar
Saito, R. Kaiho, K., Oba, M., Takahashi, S., Chen, Z.-Q. & Tong, J.-N. 2013. A terrestrial vegetation turnover in the middle of the Early Triassic. Global and Planetary Change 105, 152–9.CrossRefGoogle Scholar
Song, H.-J., Wignall, P. B., Chu, D.-L., Tong, J.-N., Sun, Y.-D., Song, H.-Y., He, W.-H. & Tian, L. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports 4, 4132. doi: 10.1038/srep04132.Google Scholar
Song, H.-J., Wignall, P. B., Tong, J.-N., Bond, D. P. G., Song, H.-Y., Lai, X.-L., Zhang, K., Wang, H.-M. & Chen, Y.-L. 2012. Geochemical evidence from bioapatite for multiple oceanic anoxic vents during end-Permian transition with end-Permian extinction and recovery. Earth and Planetary Science Letters 353–354, 1221.Google Scholar
Sun, Y.-D., Joachimski, M. M., Wignall, P. B., Yan, C.-B., Chen, Y.-L., Jiang, H.-S., Wang, L.-N. & Lai, X.-L. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 388, 366–70.CrossRefGoogle Scholar
Sun, Y.-D., Wignall, P. B., Joachimski, M. M., Bond, D. P. G., Grasby, S. E., Sun, S., Yan, C. B., Wang, L. N., Chen, Y. L. & Lai, X. L. 2015. High amplitude redox changes in the late Early Triassic of South China and the Smithian–Spathian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 427, 6278.Google Scholar
Tian, L., Tong, J.-N., Algeo, T. J., Song, H.-J., Song, H.-Y., Chu, D.-L., Shi, L. & Bottjer, D. J. 2014. Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 6879.Google Scholar
Wignall, P. B., Bond, D. P. G., Kuwahara, K., Kakuwa, K., Newton, R. J. & Poulton, S. W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71, 109–23.Google Scholar
Wignall, P. B. & Hallam, A. 1992. Anoxia as a cause of the Permian/Triassic extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 2146.Google Scholar
Wignall, P. B., Morante, R. & Newton, R. 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg. chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine 133, 4762.Google Scholar
Wignall, P. B. & Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science 298, 537–52.Google Scholar
Wignall, P. B. & Newton, R. 2001. Black shales on a basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sedimentary Geology 144, 335–56.Google Scholar
Wignall, P. B. & Twitchett, R. J. 2002. Extent, duration and nature of the Permian–Triassic superanoxic event. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K. C.), pp. 395413. Geological Society of America Special Paper no. 356.Google Scholar
Wilkin, R. T., Barnes, H. L. & Brantley, S. L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 3897–912.Google Scholar
Yan, C. B., Wang, L. N., Jiang, H. S, Wignall, P. B., Sun, Y. D., Chen, Y. L. & Lai, X. L. 2013. Uppermost Permian to Lower Triassic conodonts at Bianyang Section, Guizhou Province, South China. Palaios 28, 509–22.Google Scholar
Zonneveld, J.-P., Gingras, M. K. & Beatty, T. W. 2010. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia: evidence for shallow marine refugia on the northwestern coast of Pangea. Palaios 25, 368–92.Google Scholar