Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:12:58.510Z Has data issue: false hasContentIssue false

Soft-part preservation in a bivalved arthropod from the Late Ordovician of Wales

Published online by Cambridge University Press:  03 November 2009

ALEX PAGE*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
PHILIP R. WILBY
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
MARK WILLIAMS
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
JEAN VANNIER
Affiliation:
UMR 5125 PEPS, CNRS, Université de Lyon, Université Lyon 1, UMR 5125 PEPS ‘Paléoenvironnements et Paléobiosphère’, Campus de la Doua, Bâtiment Géode, F-69622 Villeurbanne Cedex, France
JEREMY R. DAVIES
Affiliation:
British Geological Survey, Columbus House, Greenmeadow Springs, Tongwynlais, Cardiff CF15 7NE, UK
RICHARD A. WATERS
Affiliation:
Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK
JAN A. ZALASIEWICZ
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
*
*Author for correspondence: aap30@esc.cam.ac.uk

Abstract

A new component of the Early Palaeozoic arthropod fauna is described from a monospecific accumulate of carapaces in a Late Ordovician (Katian) hemipelagic mudstone from the Cardigan district of southwest Wales (UK). Its non-biomineralized carapace is preserved as a carbonaceous residue, as is more labile anatomy (soft-parts) including the inner lamella and sub-ovate structures near its antero-dorsal margin, which we interpret to be putative eyes. The depositional context and associated fauna indicate that the arthropods inhabited an area of deep water and high primary productivity above a pronounced submarine topography. The preserved density of carapaces suggests the arthropods may have congregated into shoals or been transported post-mortem into depressions which acted as detritus traps. The accumulate provides a rare example of soft-part preservation in hemipelagic mudstones and highlights the role of organic material as a locus for authigenic mineralization during metamorphism.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, H. A. & Owen, A. W. 2002. Euconodont diversity changes in a cooling and closing Iapetus Ocean. In Palaeobiogeography and biodiversity change: the Ordovician and Mesozoic–Cenozoic Radiations (eds Crame, J. A. & Owen, A. W.), pp. 8598. Geological Society of London, Special Publication no. 194.Google Scholar
Aufderheide, A. C. 2003. The scientific study of mummies. Cambridge: Cambridge University Press, 625 pp.Google Scholar
Baas, M., Briggs, D. E. G., van Heemst, J. D. H., Kear, A. J. & de Leeuw, J. 1995. Selective preservation of chitin during the decay of shrimps. Geochimica et Cosmochimica Acta 59, 945–51.CrossRefGoogle Scholar
Berdan, J. M. 1984. Leperditiocopid ostracodes from Ordovician rocks of Kentucky and nearby states and characteristic features of the order Leperditiocopa. Professional Papers of the United States Geological Survey 1066-j, 140.Google Scholar
Botting, J. P. & Thomas, A. T. 1999. A pseudoplanktonic inarticulate brachiopod attached to graptolites and algae. Acta Universitatis Carolinae Geologica 43, 333–5.Google Scholar
Braun, A. 1997. Occurrence, investigation methods and significance of animal cuticle in Devonian and Carboniferous coal-bearing sedimentary rocks. Palaeontographica Abteilung A 245, 83156.Google Scholar
Briggs, D. E. G. 1977. Bivalved arthropods from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology 20, 595621.Google Scholar
Briggs, D. E. G. 1983. Affinities and early evolution of the Crustacea: the evidence of the Cambrian fossils. In Crustacean Phylogeny (ed. Schram, F. R.), pp. 122. Rotterdam: A. A. Balkema.Google Scholar
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London B354, 716.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31, 275301.Google Scholar
Briggs, D. E. G., Evershed, R. P. & Stankiewicz, B. A. 1998. The molecular preservation of fossil arthropod cuticles. Ancient Biomolecules 2, 135–46.Google Scholar
Briggs, D. E. G. & Kear, A. J. 1993 a. Fossilization of soft tissue in the laboratory. Science 259, 1439–42.Google Scholar
Briggs, D. E. G. & Kear, A. J. 1993 b. Decay and preservation of polychaetes – taphonomic thesholds in soft-bodied organisms. Paleobiology 19, 107–35.Google Scholar
Briggs, D. E. G. & Kear, A. J. 1994. Decay and mineralization of shrimps. Palaios 9, 431–56.CrossRefGoogle Scholar
Briggs, D. E. G., Kear, A. J., Bass, M., de Leeuw, J. W. & Rigby, S. 1995. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia 28, 1523.Google Scholar
Briggs, D. E. G., Kear, A. J., Martill, D. M. & Wilby, P. R. 1993. Phosphatization of soft-tissues in experiments and fossils. Journal of the Geological Society, London 105, 1035–8.Google Scholar
Briggs, D. E. G., Stankiewicz, B. A., Meischner, D., Bierstedt, M. & Evershed, R. P. 1998. Taphonomy of arthropod cuticles from Pliocene lake sediments, Willershausen, Germany. Palaios 13, 386–94.Google Scholar
Briggs, D. E. G., Sutton, M. D., Siveter, D. J. & Siveter, D. J. 2003. A new phyllocarid (Crustacea: Malacostraca) from the Silurian Fossil-Lagerstätte of Herefordshire, UK. Proceedings of the Royal Society, B 271,131–8.CrossRefGoogle Scholar
Butterfield, N. J. 1990. Organic preservation of nonmineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–86.CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology 43, 166–77.Google Scholar
Churkin, M. Jr. 1966. Morphology and stratigraphic range of the phyllocarid crustacean Caryocaris from Alaska and the Great Basin. Palaeontology 9, 371–80.Google Scholar
Crowther, P. R. 1981. The fine structure of graptolite periderm. Special Papers in Palaeontology 26, 1119.Google Scholar
Davies, J. R., Waters, R. A., Wilby, P. R., Williams, M. & Wilson, D. 2003. The Cardigan and Dinas Island district – a brief explanation of the geology. 1:50 000 Series England and Wales Sheet 193 (including part of Sheet 210). Keyworth: British Geological Survey.Google Scholar
Dechaseaux, C. 1951. Contribution à la connaissance des esthéries fossiles. Annales de paléontologie 37, 310.Google Scholar
Duncan, I. J., Titchener, F. & Briggs, D. E. G. 2003. Decay and Disarticulation of the Cockroach: Implications for Preservation of the Blattoids of Writhlington (Upper Carboniferous), UK. Palaios 18, 256–65.Google Scholar
Gabbott, S. E., Siveter, D. J., Aldridge, R. J. & Theron, J. N. 2003. The earliest myodocopes: ostracodes from the late Ordovician Soom Shale Lagerstätte of South Africa. Lethaia 36, 151–60.CrossRefGoogle Scholar
Garcia-Bellido, D. C., Vannier, J. & Collins, D. H. In press. Isoxys (Arthropoda) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Acta Palaeontologica Polonica.Google Scholar
Gramann, F. 1962. Extremitätenfunde an liassischen Bairdien (Ostracoda). Paläontologische Zeitschrift 36, 2832.CrossRefGoogle Scholar
Greene, C. H., Wiebe, P. H., Burczynski, J. & Youngbluth, M. J. 1988. Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank. Science 241, 359–61.Google Scholar
Gupta, N. S., Tetlie, O. E., Briggs, D. E. G. & Pancost, R. D. 2007. Fossilization of Eurypterids: A product of molecular transformation. Palaios 22, 439–47.CrossRefGoogle Scholar
Hinz, I. 1992. On Monasterium oepiki Fleming. Stereo Atlas of Ostracod Shells 19, 123–30.Google Scholar
Hof, C. H. J. & Briggs, D. E. G. 1997. Decay and mineralization of Mantis shrimps (Stomatopoda: Crustacea) – A key to their fossil record. Palaios 12, 420–38.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergstrom, J., Siveter, D. J., Siveter, D. J. & Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life. Oxford: Blackwell, 233 pp.Google Scholar
Hou, X.-G., Siveter, D. J., Williams, M. & Feng, X.-H. 2002 (for 2001). A monograph of the bradoriid arthropods from the Lower Cambrian of SW China. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 347409.Google Scholar
Kontrowitz, M. & Myers, J. H. 1984. A study of the morphology and dioptrics of some ostracode eyespots. Transactions of the Gulf Coast Association of Geological Societies 34, 369–72.Google Scholar
Kornicker, L. S. 1969. Relationship between the free and attached margins of the myodocopid ostracod shell. In The Taxonomy, Morphology and Ecology of Recent Ostracoda (ed. Neale, J. W.), pp. 109–35. Edinburgh: Oliver and Boyd.Google Scholar
Lange, S., Hof, C. H. J., Schram, F. & Steeman, F. 2001. A new genus and species from the Cretaceous of Lebanon links the Thylacocephala to the Crustacea. Palaeontology 44, 905–12.CrossRefGoogle Scholar
Lastowka, A. M., Brown, E. M. & Maffia, G. J. 2005. A comparison of chemical, physical and enzymatic cross-linking of bovine type i collagen fibrils. Journal of American Leather Chemists’ Association 100, 196202.Google Scholar
Lingham-Soliar, T. 1999. Rare soft tissue preservation showing fibrous structures in an ichthyosaur from the Lower Lias (Jurassic) of England. Proceedings of the Royal Society, London, Series B 266, 2367–73.Google Scholar
Loydell, D. K., Orr, P. J. & Kearns, S. 2004. Preservation of soft tissues in Silurian graptolites from Latvia. Palaeontology 47, 503–13.Google Scholar
Maas, A., Waloszek, D. & Müller, K. J. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata 49, 1238.Google Scholar
Maddocks, R. F. 1992. Ostracoda. In Microscopic Anatomy of Invertebrates, Volume 9, Crustacea (eds Harrison, W. & Humes, A. G.), pp. 415–41. New York: Wiley-Liss.Google Scholar
Martill, D. M. 1987 a. Prokaryote mats replacing soft-tissues in Mesozoic marine reptiles. Modern Geology 11, 265–9.Google Scholar
Martill, D. M. 1987 b. A taphonomic and diagenetic case study of a partially articulated ichthyosaur. Palaeontology 30, 543–55.Google Scholar
McLaughlin, P. A. 1980. Comparative morphology of Recent Crustacea. San Francisco: W. H. Freeman and Co.Google Scholar
McNamara, M. E., Orr, P. J., Kearns, S. L., Alcalá, L., Anadón, P. & Peñalver-Mollá, E. 2006. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians. Geology 34, 641–4.Google Scholar
Melnikova, L., Siveter, D. J. & Williams, M. 1997. Cambrian Bradoriida and Phosphatocopida (Arthropoda) of the former Soviet Union. Journal of Micropalaeontology 16, 179–91.Google Scholar
Müller, K. J. 1982. Hesslandona unisulcata sp. nov. with phosphatised appendages from Upper Cambrian ‘Orsten’ of Sweden. In Fossils and Recent Ostracodea (eds Bate, R. H., Robinson, E. & Sheppard, L. M.), pp. 277304. British Micropalaeontological Society Series. Chichester: Ellis Horwood.Google Scholar
Oakley, T. H. & Cunningham, C. W. 2002. Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. PNAS 99, 1426–30.Google Scholar
Okada, Y. 1982. Structure and cuticle formation of the reticulated carapace of the Ostracode Bicornucythere bisanensis. Lethaia 15, 85101.Google Scholar
Orr, P. J., Briggs, D. E. G. & Kearns, S. L. 2008. Taphonomy of exceptionally preserved crustaceans from the Upper Carboniferous of southeastern Ireland. Palaios 23, 298312.Google Scholar
Page, A., Gabbott, S. E., Wilby, P. R. & Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36, 855–8.CrossRefGoogle Scholar
Page, A., Wilby, P. R., Mellish, C. J. T., Williams, M. & Zalasiewicz, J. A. 2009. Dawsonia Nicholson: linguliform brachiopods, crustacean tail-pieces and a problematicum rather than graptolite ovarian vesicles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, in press.Google Scholar
Perrier, V., Vannier, J. & Siveter, D. J. 2007. The Silurian pelagic myodocope ostracod Richteria migrans. Transactions of the Royal Society of Edinburgh, Earth Sciences 98, 113.Google Scholar
Perrier, V., Vannier, J. & Siveter, D. J. In press. Silurian bolbozoids and cypridinids (Myodocopa): pioneer pelagic ostracodes? Palaeontology.Google Scholar
Racheboeuf, P., Vannier, J. & Ortega, G. 2000. Ordovician phyllocarids (Arthropoda; Crustacea) from Argentina. Paläontologische Zeitschrift 74, 317–33.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida. In Treatise on Invertebrate Paleontology, Part R, Arthropoda 4 (ed. Moore, R. C.), pp. R296R331. Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas.Google Scholar
Ruedemann, R. 1934. Paleozoic plankton of North America. Geological Society of America Memoir 2, 1141.CrossRefGoogle Scholar
Rushton, A. W. A. & Smith, M. 1993. Retrodeformation of fossils – a simple technique. Palaeontology 36, 927–30.Google Scholar
Schmidt, R. A. M. & Sellmann, P. V. 1966. Mummified Pleistocene Ostracods in Alaska. Science 153, 167–8.Google Scholar
Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 34–9.Google Scholar
Siveter, D. J., Rushton, A. W. A. & Siveter, D. J. 1995. An ostracod-like arthropod with appendages preserved from the lower Ordovician of England. Lethaia 28, 299308.Google Scholar
Siveter, D. J., Vannier, J. M. C. & Palmer, D. 1991. Silurian myodocopes: pioneer pelagic ostracodes and the chronology of an ecological shift. Journal of Micropalaeontology 10, 151–73.Google Scholar
Siveter, D. J., Waloszek, D. & Williams, M. 2003. An early Cambrian phosphatocopid crustacean with three-dimensionally preserved soft parts from Shropshire, England. Special Papers in Palaeontology 70, 920.Google Scholar
Siveter, D. J. & Williams, M. 1997. Cambrian bradoriid and phosphatocopid arthropods of North America. Special Papers in Palaeontology 57, 169.Google Scholar
Siveter, D. J., Williams, M. & Waloszek, D. 2001. A phosphatocopid crustacean with appendages from the Lower Cambrian. Science 293, 479–81.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Flannery, M. B. & Wuttke, M. 1997. Preservation of chitin in 25 million year old fossils. Science 276, 1541–3.Google Scholar
Steiner, M., Mehl, D., Reitner, J. & Erdtmann, B.-D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowissenschaftlichen Abhandlungen 9, 293329.Google Scholar
Steiner, M., Wallis, E., Erdtmann, B.-D., Zhao, Y. & Yang, R. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils – insights into a Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 165–91.Google Scholar
Stevenson, J. R. 1985. Dynamics of the integument. In The Biology of the Crustacea, Vol. 9: Integument, Pigments & Hormonal Processes (eds Bliss, D. E. & Mantel, L. H.), pp. 142. Orlando, Florida: Academic Press Inc.Google Scholar
Underwood, C. J. 1992. Graptolite preservation and deformation. Palaios 7, 178–86.Google Scholar
Vannier, J. 2007. Early Cambrian origin of complex marine ecosystems. In Deep time perspectives on climate change (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.), pp. 81100. Bath: The Micropalaeontological Society, Geological Society Publishing House.Google Scholar
Vannier, J. & Abe, K. 1992. Recent and early Palaeozoic myodocope ostracods: functional morphology, phylogeny, distribution and lifestyles. Palaeontology 35, 485517.Google Scholar
Vannier, J., Abe, K. & Ikuta, K. 1996. The gills of myodocopid ostracods exemplified by Leuroleberis surugaensis (Cylindroleberididae) from Japan. Journal of Crustacean Biology 16, 78101.CrossRefGoogle Scholar
Vannier, J., Abe, K. & Ikuta, K. 1998. Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Marine Biology 132, 391408.Google Scholar
Vannier, J., Boissy, P. H. & Racheboeuf, P. R. 1997. Locomotion in Nebalia bipes: a model for Palaeozoic phyllocarid crustaceans? Lethaia 30, 89104.Google Scholar
Vannier, J., Caron, J.-B., Yuan, J.-L., Briggs, D. E. G., Collins, D., Zhao, Y.-L. & Zhu, M.-Y. 2007. Tuzoia: morphology and lifestyle of a large bivalved arthropod of the Cambrian seas. Journal of Paleontology 81, 445–71.Google Scholar
Vannier, J. & Chen, J.-Y. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33, 295311.CrossRefGoogle Scholar
Vannier, J., Chen, J.-Y., Huang, D.-Y., Charbonnier, S. & Wang, X.-Q. 2006. Thylacocephalan arthropods: their Early Cambrian origin and evolutionary significance. Acta Palaeontologica Polonica 51, 114.Google Scholar
Vannier, J., Racheboeuf, P., Brussa, E., Williams, M., Rushton, A. W. A., Servais, Th. & Siveter, D. 2003. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeography, Palaeoclimatology, Palaeoecology 79, 119.Google Scholar
Vannier, J., Wang, S.-Q. & Coen, M. 2001. Leperditicopid arthropods (Ordovician–Late Devonian): functional morphology and ecological range. Journal of Paleontology 75, 7595.Google Scholar
Vetter, E. W. 1995. Detritus-based patches of high secondary production in the nearshore benthos. Marine Ecology Progress Series 120, 251–62.Google Scholar
Vinther, J., Briggs, D. E. G., Prum, R. O. & Saranathan, V. 2008. The colour of fossil feathers. Biology Letters 4, 522–5.Google Scholar
Waloszek, D., Chen, J.-Y., Maas, A. & Wang, X.-Q. 2005 Early Cambrian arthropods – new insights into arthropod head and structural evolution. Arthropod Structure and Development 34, 189205.Google Scholar
Weitschat, W. 1983. Ostracoden (O. Myodocopida) mit Weichkörper-Erhaltung aus der Unter-Trias von Spitzbergen. Paläontologische Zeitschrift 57, 309–23.Google Scholar
Wignall, P. B. & Hallam, A. 1991. Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. In Modern and Ancient Shelf Anoxia (eds Tyson, R.V. & Pearson, T. H.), pp. 291309. Geological Society of London, Special Publication no. 58.Google Scholar
Wilby, P. R. 1993. The role of organic matrices in post-mortem phosphatization of soft tissues. Kaupia 2, 99113.Google Scholar
Wilby, P. R., Page, A. A., Zalasiewicz, J. A., Milodowski, A. E., Williams, M. & Evans, J. A. 2007. Syntectonic monazite in low-grade mudrocks; a potential geochronometer for cleavage formation? Journal of the Geological Society, London 164, 53–6.Google Scholar
Wilkinson, I. P., Williams, M., Siveter, D. J. & Wilby, P. R. 2004. A Carboniferous necrophagous myodocopid ostracod from Derbyshire, England. Revista Española de Micropalaeontologia 36, 195206.Google Scholar
Williams, M., Davies, J. R., Waters, R. A., Rushton, A. W. A. & Wilby, P. R. 2003. Stratigraphical and palaeoecological importance of Caradoc (Upper Ordovician) graptolites from the Cardigan area, southwest Wales. Geological Magazine 140, 549–71.Google Scholar
Williams, M., Siveter, D. J. & Peel, J. S. 1996. Isoxys (Arthropoda) from the Early Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology 70, 947–54.CrossRefGoogle Scholar
Williams, M. & Vannier, J. M. C. 1995. Middle Ordovician Aparchitidae and Schmidtellidae: the significance of ‘featureless’ ostracods. Journal of Micropalaeontology 14, 724.Google Scholar
Zhu, M.-Y., Zhang, J.-M., Steiner, M., Yang, A., Li, G.-X. & Erdtmann, B.-D. 2004. Sinian–Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach. In Biological and geological processes of the Cambrian explosion (eds Zhu, M.-Y. & Steiner, M.), pp. 7584. Progress in Natural Science, Special Issue 2004.Google Scholar