Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:38:31.500Z Has data issue: false hasContentIssue false

Integrated stratigraphy and palaeoecology of the Lower and Middle Miocene of the Porcupine Basin

Published online by Cambridge University Press:  20 December 2007

STEPHEN LOUWYE*
Affiliation:
Research Unit Palaeontology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
ANNELEEN FOUBERT
Affiliation:
Renard Centre for Marine Geology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
KENNETH MERTENS
Affiliation:
Research Unit Palaeontology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
DAVID VAN ROOIJ
Affiliation:
Renard Centre for Marine Geology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
*
Author for correspondence: Stephen.Louwye@UGent.be

Abstract

A high-resolution palynological analysis and a detailed palaeomagnetic study of a marine sequence recovered during IODP Expedition Leg 307 in the Porcupine Basin southwest of Ireland provide new insights into the regional depositional history and palaeoenvironmental evolution during Early Neogene times. The Hole 1318B studied was drilled on the upper slope of the continental margin in a water depth of 409 m, upslope from a province of carbonate mounds (the Belgica mound province). The diverse and well-preserved dinoflagellate cyst associations consist typically of deep neritic and oceanic species, mixed with a neritic component transported from the shelf, reflecting the deep depositional setting at the continental margin. The palaeomagnetic record together with the ranges of key dinoflagellate cyst species constrain the age of the studied sequence between 16.7 Ma and 12.01 Ma, that is, between the late Burdigalian and late Serravallian. The distinct unconformity terminating the Miocene sequence correlates to the global sequence boundary Ser4/Tor1 dated at 10.5 Ma, and represents, according to previous extensive seismic studies, a basin-wide erosional event. The overlying sediments are of Middle Pleistocene or younger age. Downslope from IODP Site 1318, carbonate mounds root on the erosional surface. The dinoflagellate cyst associations from the Porcupine Basin distinctly mirror the global cooling phase following the Middle Miocene Climatic Optimum. Cooling phase Mi3, a short-lived glaciation, is particularly well expressed and here dated at 13.6 Ma. The palynomorph record furthermore indicates a reduction of the productivity and an increase of oceanic oligotrophic species after 14 Ma, suggesting a reduction or perhaps even a shutdown of the upwelling.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abels, H. A., Hilgen, F. J., Krijgsman, W., Kruk, R. W., Raffi, I., Turco, E. & Zachariasse, W. J. 2005. Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20 (4), 117.CrossRefGoogle Scholar
Boessenkool, K. P., Brinkhuis, H., Schonfeld, J. & Targarona, J. 2001. North Atlantic sea surface temperature changes and the climate of western Iberia during the last deglaciation: a marine palynological approach. Global and Planetary Change 30 (1), 33–9.CrossRefGoogle Scholar
Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195 (3–4), 389401.CrossRefGoogle Scholar
Brown, S. & Downie, C. 1984. Dinoflagellate cyst stratigraphy of Paleocene to Miocene sediments from the Goban Spur (Sites 548–550, Leg 80). In Initial Reports of the Deep Sea Drilling Project, vol. 80 (eds De Graciansky, P. C. & Poag, C. W.), pp. 643–51. Washington D.C.: U. S. Government Printing Office.Google Scholar
Cortese, G., Gersonde, R., Hillenbrand, C.-D. & Kuhn, G. 2004. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters 224, 509–27.CrossRefGoogle Scholar
Costa, L. I. & Downie, C. 1979. Cenozoic dinocyst stratigraphy of Sites 403 to 406 (Rockall Plateau), IPOD, Leg 48. In Initial reports of the Deep Sea Drilling project (eds Montadert, L. & Robert, D. G.), pp. 513–29. Washington D.C.: U.S. Government Printing Office.Google Scholar
Dale, A. L. 1996. Chapter 31. Dinoflagellate cyst ecology: Modelling and geological applications. In Palynology: Principles and applications, vol. 3 (eds Jansonius, J. & McGregor, D. C.), pp. 1249–75. AASP (American Association of Stratigraphic Palynologists) Foundation.Google Scholar
Dale, A. L. & Dale, B. 1992. Dinoflagellate contributions to the sediment flux in the Nordic Seas. Ocean Biocoenosis Series 5, 4576.Google Scholar
Dale, B. & Dale, A. 2002. Environmental application of dinoflagellate cysts and acritarchs. In Quaternary environmental micropalaeontology (ed. Haslett, S. K.), pp. 207–24. London: Arnold.Google Scholar
De Graciansky, P. C., Poag, C. W., Cunningham, R., Loubere, P., Masson, D. G., Mazzullo, J. M., Montadert, L., Müller, C., Otsuka, K., Reynolds, L. A., Sigal, J., Snyder, S. W., Vaos, S. P. & Waples, D. 1985. Site 548. In Initial Reports of the Deep Sea Drilling Project, vol. 80 (eds De Graciansky, P. C., de Poag, C. W., Cunningham, R., Loubere, P., Masson, D. G., Mazzullo, J. M., Montadert, L., Müller, C., Otsuka, K., Reynolds, L. A., Sigal, J., Snyder, S. W., Vaos, S. P. & Waples, D.), pp. 33122. Washington D.C.: U.S. Government Printing Office.CrossRefGoogle Scholar
De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooij, D., McDonnell, A., Huvenne, V., Ivanov, M., Swennen, R. & Henriet, J.-P. 2002. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Marine Geology 188, 193231.CrossRefGoogle Scholar
De Verteuil, L. 1996. Data report: Upper Cenozoic dinoflagellate cysts from the continental slope and rise off New Jersey. In Proceedings of the Ocean Drilling program, Scientific Results, vol. 150 (eds Mountain, J. S., Miller, K. G., Blum, P., Poag, C. W. & Twitchell, D. C.), pp. 439–54. College Station, Texas.Google Scholar
De Verteuil, L. 1997. Palynological delineation and regional correlation of lower through upper Miocene sequences in the Cape May and Atlantic City boreholes, New Jersey coastal plain. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 150 (eds Miller, K. G. & Snyder, S. W.), pp. 129–45. College Station, Texas.Google Scholar
De Verteuil, L. & Norris, G. 1996. Miocene dinoflagellate stratigraphy and systematics of Maryland and Virginia. Micropaleontology Supplement 42, 1172.Google Scholar
Edwards, L. 1984. Miocene dinocysts from Deep Sea Drilling Project Leg 81, Rockall Plateau, eastern North Atlantic Ocean. In Initial Reports of the Deep Sea Drilling Project, vol. 81 (eds Robert, D. G. & Schnitker, D.), pp. 581–94. Washington D.C.: U. S. Government Printing Office.Google Scholar
Expedition 307 Scientists. 2006. Site U1318. In Proceedings of the Integrated Ocean Drilling program, vol. 307 (eds Ferlman, T. G., Kano, A., Williams, T., Henriet, J.-P. & thede Expedition 307 Scientists), pp. 157. Washington, D. C.Google Scholar
Fensome, R. A. & Williams, G. L. 2004. The Lentin and Williams Index of Fossil Dinoflagellates 2004 Edition. AASP (American Assoication of Stratigraphic Palynologists Foundation) Contributions Series no. 42, 1909.Google Scholar
Florindo, F., Roberts, A. P. & Palmer, M. R. 2003. Magnetite dissolution in siliceous sediments. Geochemistry, Geophysics and Geosystems 4, 1053.CrossRefGoogle Scholar
Foubert, A., Beck, T., Wheeler, A.J., Opderbecke, J., Grehan, A., Klages, M., Thiede, J., Henriet, J. P. & The Polarstern ARK-XIX/3a Shipboard Party. 2005. New view of the Belgica Mounds, Porcupine Seabight, NE Atlantic: preliminary results from the Polarstern ARK-XIX/3a ROV cruise. In Cold-water corals and ecosystems (eds Freiwald, A. & Roberts, J. M.), pp. 403–15. Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2005. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 589 pp.CrossRefGoogle Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P. C. & Vail, P. R. 1998. Cenozoic sequence biochronostratigraphy. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Gradiansky, P. C., Hardenbol, J., Jacquin, T. & Vail, P.). Chart 2. SEPM Special Publication no. 60. Tulsa, Oklahoma: SEPM (Society Economic Paleontologists and Mineralogists).Google Scholar
Head, M. J. 1993. Dinoflagellates, sporomorphs, and other palynomorphs from the upper Pliocene St. Erth Beads of Cornwall, Southwestern England. Journal of Paleontology 67 (3), 162.CrossRefGoogle Scholar
Head, M. J. 1994. Morphology and paleoenvironmental significance of the Cenozoic dinoflagellate genera Tectatodinium and Habibacysta. Micropaleontology 40, 289321.CrossRefGoogle Scholar
Head, M. J. 1997. Thermophilic dinoflagellate assemblages from the Mid Pliocene of Eastern England. Journal of Palaeontology 71 (2), 165–93.CrossRefGoogle Scholar
Head, M. J. 2003. Neogene occurrences of the marine acritarch genus Nannobarbophora Habib and Knapp, 1982 Emend., and the new species Nannobarbophora gedlii. Journal of Paleontology 77 (2), 382–5.2.0.CO;2>CrossRefGoogle Scholar
Head, M. J., Norris, G. & Mudie, P. 1989 a. Palynology and dinocyst stratigraphy of the Upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea. In Proceedings Ocean Drilling Project, Scientific Results, vol. 105 (eds Srivastava, S. P., Arthur, M. A. & Clement, B.), pp. 423–51. College Station, Texas.Google Scholar
Head, M. J., Norris, G. & Mudie, P. 1989 b. New species of dinoflagellate cysts and a new species of acritarch from the Upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea. In Proceedings Ocean Drilling Project, Scientific Results, vol. 105 (eds Srivastava, S. P., Arthur, M. A. & Clement, B.), pp. 453–66. College Station, Texas.Google Scholar
Head, M. J., Norris, G. & Mudie, P. 1989 c. Palynology and dinocyst stratigraphy of the Miocene in ODP Leg 105, Hole 645E, Baffin Bay. In Proceedings Ocean Drilling Program, Scientific Results, vol. 105 (eds Srivastava, S. P., Arthur, M. A. & Clement, B.), pp. 467514. College Station, Texas.Google Scholar
Henriet, J. P., De Mol, B., Pillen, S., Vanneste, M., Van Rooij, D., Versteeg, W., Croker, P. F., Shannon, P. M., Unnithan, V., Bouriak, S. & Chachkine, P. 1998. Gas hydrate crystals may help build reefs. Nature 391, 648–9.CrossRefGoogle Scholar
Hovland, M., Croker, P. F. & Martin, M. 1994. Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Marine and Petroleum Geology 11 (2), 232–46.CrossRefGoogle Scholar
Huvenne, V. A. I., Croker, P. F. & Henriet, J. P. 2002. A refreshing 3-dimensional view of an ancient sediment collapse and slope failure. Terra Nova 14, 3340.CrossRefGoogle Scholar
John, C. M., Karner, G. D. & Mutti, M. 2004. Delta O-18 and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 32 (9), 829–32.CrossRefGoogle Scholar
Kano, A., Ferdelman, T. G., Williams, T., Henriet, J.-P., Ishikawa, T., Kawagoe, N., Takashima, C., Kakizaki, Y., Abe, K., Sakai, S., Browning, E. L., Li, X. & Integrated Ocean Drilling Program Expedition 307 Scientists. 2007. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35, 1051–4.CrossRefGoogle Scholar
Kirschvink, J. L. 1980. The least-square line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Le Danois, E. 1948. Les profondeurs de la mer. Paris: Payot, 303 pp.Google Scholar
Lourens, L., Hilgens, F., Shackleton, N. J., Laskar, J. & Wilson, J. 2005. The Neogene. In A Geologic Timescale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.), pp. 409–30. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Louwye, S. 2002. Dinoflagellate cyst biostratigraphy of the Upper Miocene Deurne Sands (Diest Formation) of northern Belgium, southern North Sea Basin. Geological Journal 37 (1), 5567.CrossRefGoogle Scholar
Louwye, S. 2005. The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geological Journal 40 (4), 441–56.CrossRefGoogle Scholar
Louwye, S., De Coninck, J. & Verniers, J. 2000. Shallow marine Lower and Middle Miocene deposits at the southern margin of the North Sea Basin: dinoflagellate cyst biostratigraphy and depositional history. Geological Magazine 137, 381–94.CrossRefGoogle Scholar
Louwye, S., Head, M. J. & De Schepper, S. 2004. Dinoflagellate cyst stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern North Sea Basin. Geological Magazine 141, 353–78.CrossRefGoogle Scholar
Manum, S. B. 1976. Dinocysts in tertiary Nowegian–Greenland Sea sediments (Deep Sea Drilling project leg 38), with observations on palynomorphs and palynodebris in relation to environment. In Initial Reports of the Deep Sea Drilling Project, vol. 38 (eds Talwani, M. & Udintsev, G.), pp. 897919. Washington D.C.: U.S. Government Printing Office.Google Scholar
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K. & Scholze, A. 1989. Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104). In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 104 (eds Eldholm, O., Thiede, J. & Taylor, E.), pp. 611–62. College Station, Texas.Google Scholar
Marret, F. & Zonneveld, K. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology 125, 1200.CrossRefGoogle Scholar
McDonnell, A. & Shannon, P. M. 2001. Comparative Tertiary stratigraphic evolution of the Porcupine and Rockall basins. In The Petroleum Exploration of Ireland's Offshore Basins (eds Shannon, P. M., Haughton, P. & Corcoran, D.), pp. 323–44. Geological Society of London, Special Publication no. 188.Google Scholar
Miller, K. G., Mountain, G. S, Browning, J. V., Kominz, M., Sugarman, P. J., Christie-Blick, N., Katz, M. E. & Wright, J. D. 1998. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling. Reviews of Geophysics 36 (4), 569601.CrossRefGoogle Scholar
Miller, K. G., Wright, J. D. & Fairbanks, R. G. 1991. Unlocking the Ice House: Oligocene–Miocene Oxygen isotopes, Eustasy and margin erosion. Journal of Geophysical Research 96, B4, 6829–48.CrossRefGoogle Scholar
Moore, J. G. & Shannon, P. M. 1992. Palaeocene–Eocene deltaic sedimentation, Porcupine Basin, offshore Ireland – a sequence stratigraphic approach. First Break 10 (12), 461–9.CrossRefGoogle Scholar
Munsterman, D. K. & Brinkhuis, H. 2004. A southern North Sea Miocene dinoflagellate cyst zonation. Netherlands Journal of Geosciences–Geologie en Mijnbouw 83 (4), 267–85.CrossRefGoogle Scholar
Naylor, D. & Shannon, P. M. 1982. The Geology of Offshore Ireland and West Britain. London: Graham & Trotman Ltd, 161 pp.CrossRefGoogle Scholar
Pearson, I. & Jenkins, D. G. 1986. Unconformities in the Cenozoic of the North-East Atlantic. In North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.), pp. 7986. Geological Society of London, Special Publication no. 21.Google Scholar
Piasecki, S. 1980. Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark. Bulletin of the Geological Society of Denmark 29, 5376.CrossRefGoogle Scholar
Piasecki, S. 2003. Neogene dinoflagellate cysts from Davis Strait, offshore West Greenland. Marine and Petroleum Geology 20 (9), 1075–88.CrossRefGoogle Scholar
Reichart, G. J. & Brinkhuis, H. 2003. Late quaternary Protoperidinium cysts as indicators of paleoproductivity in the northern Arabian Sea. Marine Micropaleontology 49 (4), 303–15.CrossRefGoogle Scholar
Rice, A. L., Billet, D. S. M., Thurston, M. H. & Lampitt, R. S. 1991. The Institute of Oceanographic Sciences Biology programme in the Porcupine Seabight: background and general introduction. Journal of the Marine Biological Association of the United Kingdom 71, 281310.CrossRefGoogle Scholar
Shannon, P. M. 1991. The development of Irish offshore sedimentary basins. Journal of the Geological Society, London 148, 181–9.CrossRefGoogle Scholar
Shevenell, A. E., Kennett, J. P. & Lea, D. W. 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–70.CrossRefGoogle ScholarPubMed
Stoker, M. S., Hoult, R. J., Nielsen, T., Hjelstuen, B. O., Laberg, J. S., Shannon, P. M., Praeg, D., Mathiesen, A., van Weering, T. C. E. & McDonnell, A. 2005. Sedimentary and oceanographic responses to early Neogene compression on the NW European margin. Marine and Petroleum Geology 22 (9–10), 1031–44.CrossRefGoogle Scholar
Stoker, M. S., van Weering, T. C. E. & Svaerdborg, T. 2001. A mid- to late Cenozoic tectonostratigraphic framework for the Rockall Trough. In Petroleum Exploration of Ireland's offshore basins (eds Shannon, P. M., Haughton, P. & Corcoran, D.), pp. 411–38. Geological Society of London, Special Publication no. 188.Google Scholar
Strauss, C., Lund, J. J. & Lund-Christensen, J. 2001. Miocene dinoflagellate cyst biostratigraphy of the research well Nieder Ochtenhausen, NW Germany. Geologisches Jahrbuch A152, 395447.Google Scholar
Sturrock, S. J. 1996. Biostratigraphy. In Sequence Stratigraphy (eds Emery, D. & Myers, K.), pp. 89107. Oxford: Blackwell Science.CrossRefGoogle Scholar
Thomson, C. W. 1873. The depths of the Sea. London: MacMillan.Google Scholar
Traverse, A. 1988. Production, dispersal, and sedimentation of spores/pollen. In Paleopalynology (ed. Traverse, A.), pp. 375430. Boston: Unwin Hyman.Google Scholar
Van Rooij, D., Blamart, D., Kozachenko, M. & Henriet, J.-P. 2007. Small mounded contourite drifts associated with deep-water coral banks, Porcupine Seabight, NE Atlantic Ocean. In Economic and Palaeoceanographic Significance of Contourite Deposits (eds Viana, A. & Rebesco, M.), pp. 225–44. Geological Society of London, Special Publication no. 276.Google Scholar
Van Rooij, D., De Mol, B., Huvenne, V., Ivanov, M. K. & Henriet, J.-P. 2003. Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Marine Geology 195, 3153.CrossRefGoogle Scholar
Versteegh, G. & Zonneveld, K. 1994. Determination of (palaeo-)ecological preferences of dinoflagellates by applying detrended and canonical correspondence analysis to Late Pliocene dinoflagellate cyst assemblages of the south Italian Singa section. Review of Palaeobotany and Palynology 84 (1–2), 181–99.CrossRefGoogle Scholar
Versteegh, G. J. M. 1994. Recognition of cyclic and non-cyclic environmental changes in the mediterranean Pliocene: a palynological approach. Marine Micropaleontology 23, 147–83.CrossRefGoogle Scholar
Versteegh, G. J. M., Brinkhuis, H., Visscher, H. & Zonneveld, K. A. F. 1996. The relation between productivity and temperature in the Pliocene North Atlantic at the onset of northern hemisphere glaciation: A palynological study. Global And Planetary Change 11 (4), 155–65.CrossRefGoogle Scholar
Warny, S. A & Wrenn, J. H. 2002. Upper Neogene dinoflagellate cyst ecostratigraphy of the Atlantic coast of Morocco. Micropaleontology 48 (3), 257–72.CrossRefGoogle Scholar
Westerhold, T., Bickert, T. & Rohl, U. 2005. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on miocene climate variability and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 217 (3–4), 205–22.CrossRefGoogle Scholar
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A. & Weegink, J. W. 2004. Southern Ocean and global dinoflagellate cyst events compared. Index events for the Late Cretaceous–Neogene. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 189 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 198. College Station, Texas.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–93.CrossRefGoogle ScholarPubMed
Zevenboom, D. 1995. Dinoflagellate cysts from the Mediterranean Late Oligocene and Miocene. CIP-gegevens Koninklijke Bibliotheek Den Haag, 221 pp. (published Ph.D. thesis, University of Utrecht, The Netherlands.)Google Scholar
Zevenboom, D., Brinkhuis, H. & Visscher, H. 1994. Dinoflagellate cysts palaeoenvironmental analysis of the Oligocene/Miocene transition in northwest and central Italy. Giornale di Geologia serie 3a 56 (1), 155–69.Google Scholar
Zhang, C. & Ogg, J. G. 2003. An integrated paleomagnetic analysis program for stratigraphy labs and research projects. Computers & Geosciences 29, 613–25.CrossRefGoogle Scholar
Zonneveld, K. A. F., Versteegh, G. J. M. & de Lange, G. J. 2001. Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel. Marine Geology 172 (3–4), 181–95.CrossRefGoogle Scholar