Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:04:54.586Z Has data issue: false hasContentIssue false

Geochronological, geochemical and Sr–Nd–Hf isotopic constraints on petrogenesis of Late Mesozoic gabbro–granite complexes on the southeast coast of Fujian, South China: insights into a depleted mantle source region and crust–mantle interactions

Published online by Cambridge University Press:  16 September 2011

ZHEN LI
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P. R. China
JIAN-SHENG QIU*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P. R. China
XI-SHENG XU
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P. R. China
*
*Author for correspondence: jsqiu@nju.edu.cn

Abstract

The Quanzhou (QZ) and Huacuo (HC) gabbro–granite complexes on the southeast coast of Fujian, South China, are important components of a Late Mesozoic calc-alkaline volcanic–plutonic belt in the region. The complexes provide an excellent opportunity to investigate the genetic relationships between acid and basic magmas, and their interactions within the intrusive environment. The complexes are composed mainly of monzogranite and biotite granodiorite in the QZ complex, and biotite granite in the HC complex, with lesser amounts of hornblende gabbro. Zircon U–Pb dating provides consistent crystallization ages of 109 ± 1 Ma and 108 ± 1 Ma for the QZ gabbros and monzogranites, and an age of 111 ± 1 Ma for the HC gabbro, which is contemporaneous with the spatially associated HC granites. Both the mafic and felsic intrusions in these complexes are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs), and are depleted in high-field-strength elements (HFSEs; e.g. Nb and Ta). They show similarly homogeneous Sr–Nd isotopic compositions. All these factors indicate a close genetic relationship between the gabbroic and granitic rocks in the QZ and HC complexes. Although the enriched Sr–Nd isotopic signatures of the QZ and HC gabbros seemingly point to an enriched mantle source (EM-1), they have highly variable zircon Hf isotopic compositions, with εHf(t) values ranging from negative to positive (specifically –4.6 to +6.1 for the QZ gabbros and –4.8 to +11.6 for the HC gabbros). We interpret the parental basic magmas of these gabbros to have received contributions from a depleted mantle source and crustal components. Contributions from such a depleted mantle source resulted in the growth of juvenile basaltic lower crust, the partial melting of which generated the parental felsic magmas of the QZ and HC complexes. Furthermore, based on a synthesis of petrography, geochronology, elemental and isotopic geochemistry and tectonics, we propose that break-off and rollback of the Late Mesozoic subducted Palaeo-Pacific Plate triggered the upwelling of asthenospheric mantle below the coastal area of the South China Block, which induced extension of the overlying continental lithosphere, and finally initiated the large-scale Late Yanshanian magmatism in the study area.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altunkaynak, S. 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. Journal of Geology 115, 6382.CrossRefGoogle Scholar
Andersen, T. 2002. Correction of common Pb in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Andersen, T., Griffin, W. L. & Sylvester, A. G. 2007. Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93, 273–87.CrossRefGoogle Scholar
Ando, H. 2003. Stratigraphic correlation of Upper Cretaceous to Paleocene forearc basin sediments in Northeast Japan: cyclic sedimentation and basin evolution. Journal of Asian Earth Sciences 21, 921–35.CrossRefGoogle Scholar
Atherton, M. P. & Ghani, A. A. 2002. Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62, 6585.CrossRefGoogle Scholar
Beard, J. S. 1986. Characteristic mineralogy of arc-related cumulate gabbros: implication for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14, 848–51.2.0.CO;2>CrossRefGoogle Scholar
Belousova, E. A., Griffin, W. L. & O'Reilly, S. Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. Journal of Petrology 47, 329–53.CrossRefGoogle Scholar
Biq, C. 1971. A fossil subduction zone in Taiwan. Proceedings of the Geological Society of China 14, 146–54.Google Scholar
Black, L. P. & Gulson, B. L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Bureau of Mineral Resources, Journal of Australian Geology and Geophysics 3, 227–32.Google Scholar
Blichert-Toft, J. & Albarède, F. 1997. The Lu–Hf geochemistry of chondrites and evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Boynton, W. V. 1984. Geochemistry of the rare earth elements: meteorite studies. In Rare Earth Elements Geochemistry (ed. Henderson, P.), pp. 63144. Amsterdam: Elsevier.CrossRefGoogle Scholar
Chang, C. P., Angelier, J., Huang, C. Y. & Liu, C. S. 2001. Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine 138, 633–51.CrossRefGoogle Scholar
Charvet, J., Lapierre, H. & Yu, Y. W. 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences 9, 387–96.CrossRefGoogle Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of south China: collision of Yangtzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.CrossRefGoogle Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Chen, J. F., Foland, K. A., Xing, F., Xu, X. & Zhou, T. 1991. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathaysian blocks of China. Geology 19, 815–8.Google Scholar
Chen, J. F., Guo, X. S., Tang, J. F. & Zhou, T. X. 1999. Nd isotopic model ages: implications of the growth of the continental crust of southeastern China. Journal of Nanjing University (Natural Sciences) 35, 649–58 (in Chinese).Google Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multicollector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.CrossRefGoogle Scholar
Cloos, M., Sapiie, B., Van Ufford, A. Q., Weiland, R. J., Warren, P. Q. & McMahon, T. P. 2005. Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff. Geological Society of America, Special Papers 400, 151.Google Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zhang, Z. C. & Ma, G. G. 1992. Zircon U–Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.CrossRefGoogle Scholar
Davies, J. H. & Von Blanckenburg, F. 1995. Slab breakoff, a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85102.CrossRefGoogle Scholar
DeBievre, P. & Taylor, P. D. P. 1993. Table of the isotopic composition of the elements. International Journal of Mass Spectrometry and Ion Processes 123, 149–66.CrossRefGoogle Scholar
Dong, C. W., Li, W. X., Chen, X. M., Xu, X. S. & Zhou, X. M. 1998. Late Mesozoic magma mixing in SE-Fujian: petrologic evidence from Pingtan igneous complex. Progress in Natural Science 8, 196201.Google Scholar
Dong, C. W., Zhang, D. R., Xu, X. S., Yan, Q. & Zhu, G. Q. 2006. SHRIMP U–Pb dating and lithogeochemistry of basic-intermediate dike swarms from Jinjiang, Fujian province. Acta Petrologica Sinica 22, 1696–702 (in Chinese).Google Scholar
Dong, C. W., Zhou, X. M., Li, H. M., Ren, S. L. & Zhou, X. H. 1997. Late Mesozoic crust-mantle interaction in southeastern Fujian: isotopic evidence from the Pingtan igneous complex. Chinese Science Bulletin 42, 495–8.CrossRefGoogle Scholar
FJBGMR (Bureau of Geology and Mineral Resources of Fujian Province). 1998. Directions on Geological Map at Scale of 1:500000 of Fujian Province. Fujian: Fujian Cartographic Publishing House, 120 pp (in Chinese).Google Scholar
Franzini, M., Leoni, L. & Saitta, M. 1972. A simple method to evaluate the matrix effect in X-ray fluorescence analysis. X-ray Spectrometry 1, 151–4.CrossRefGoogle Scholar
Fuh, S. C., Liu, C. S., Lundberg, N. & Reed, D. 1997. Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes. Tectonophysics 274, 2539.CrossRefGoogle Scholar
Gao, J. F., Lu, J. J., Lai, M. Y., Lin, Y. P. & Pu, W. 2003. Analysis of trace elements in rock samples using HR-ICPMS. Journal of Nanjing University (Natural Sciences) 39, 844–50 (in Chinese).Google Scholar
Glazner, A. F. & Farmer, G. L. 1992. Production of isotopic variability in continental basalts by cryptic crustal contamination. Science 255, 72–4.CrossRefGoogle ScholarPubMed
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.CrossRefGoogle Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.CrossRefGoogle Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. S. & Zhou, X. M. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.CrossRefGoogle Scholar
Haschke, M. R. & Scheuber, E. 2002. Evolutionary cycles during the Andean Orogeny: repeated slab breakoff and flat subduction? Terra Nova 14, 4955.CrossRefGoogle Scholar
Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T. & Rogers, N. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Region. Journal of Geophysical Research 100, 10271–86.CrossRefGoogle Scholar
Ho, C. S. 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics 125, 116.CrossRefGoogle Scholar
Hofmann, A. W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297314.CrossRefGoogle Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 485, 219–29.CrossRefGoogle Scholar
Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W. & Kuan-Yuan, X. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281, 3151.CrossRefGoogle Scholar
Huang, X., Sun, S. H., De Paolo, D. J. & Wu, K. L. 1986. Nd–Sr isotope study of Cretaceous magmatic rocks from Fujian Province. Acta Petrologica Sinica 2, 5063 (in Chinese).Google Scholar
Iizumi, S., Imaoka, T. & Kagami, H. 2000. Sr–Nd isotope ratios of gabbroic and dioritic rocks in a Cretaceous-Paleogene granite terrain, Southwest Japan. The Island Arc 9, 113–27.CrossRefGoogle Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jahn, B. M., Chen, P. Y. & Yan, T. P. 1976. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Bulletin of the Geological Society of America 86, 763–76.2.0.CO;2>CrossRefGoogle Scholar
Jahn, B. M., Martineau, F., Peucat, J. J. & Cornichet, J. 1986. Geochronology of the Tananao Schist complex, Taiwan, and its regional tectonic significance. Tectonophysics 125, 103–24.CrossRefGoogle Scholar
Jahn, B. M., Zhou, X. H. & Li, J. L. 1990. Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics 183, 145–60.CrossRefGoogle Scholar
Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95, 2661–78.CrossRefGoogle Scholar
Kemp, A. I. S. & Hawkesworth, C. J. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226, 144–62.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M. & Whitehouse, M. J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315, 980–3.CrossRefGoogle ScholarPubMed
Kinny, P. D. & Mass, R. 2003. Lu–Hf and Sm–Nd isotope systems in zircon. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 327–41. Reviews in Mineralogy and Geochemistry no. 53.Google Scholar
Kohn, M. J. & Parkinson, C. D. 2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30, 591–94.2.0.CO;2>CrossRefGoogle Scholar
Lan, C. Y., Lee, T., Jahn, B. M. & Yui, T. F. 1995. Taiwan as a witness of repeated mantle inputs – Sr–Nd–O isotopic geochemistry of Taiwan granitoids and metapelites. Chemical Geology 124, 287303.CrossRefGoogle Scholar
Lan, C. Y., Lee, T. & Wang, L. C. 1990. The Rb–Sr isotopic record in Taiwan gneisses and its tectonic implication. Tectonophysics 183, 129–43.Google Scholar
Lapierre, H., Jahn, B. M., Charvet, J. & Yu, Y. W. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274, 321–38.CrossRefGoogle Scholar
Leat, P. T., Larter, R. D. & Millar, I. L. 2007. Silicic magmas of Protector Shoal, South Sandwich arc: indicators of generation of primitive continental crust in an island arc. Geological Magazine 144, 179–90.CrossRefGoogle Scholar
Li, X. H. 1997. Timing of the Cathaysia Block formation: constraints from SHRIMP U–Pb zircon geochronology. Episodes 20, 188–92.CrossRefGoogle Scholar
Li, X. H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences 18, 293305.CrossRefGoogle Scholar
Li, H. M., Dong, C. W., Xu, X. S. & Zhou, X. M. 1995. Zircon U-Pb dating on the Quanzhou gabbros: the origin of mafic magmatic rocks in southeastern Fujian. Chinese Science Bulletin 40, 158–60.Google Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35, 179–82.CrossRefGoogle Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 136, 5166.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G. J. & Qi, C. S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96, 186204.CrossRefGoogle Scholar
Li, Z., Qiu, J. S., Jiang, S. Y., Xu, X. S. & Hu, J. 2009. Petrogenesis of the Jinshan granitic composite pluton in Fujian Province: constraints from elemental and isotopic geochemistry. Acta Geologica Sinica 83, 515–27 (in Chinese).Google Scholar
Lo, C. H. & Yui, T. F. 1996. 40Ar/39Ar Dating of high-pressure rocks in the Tananao basement complex, Taiwan. Journal of the Geological Society of China 39, 1330.Google Scholar
Ludwig, K. R. 2001. Isoplot/Ex (rev.) 2.49: A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication no. 1a, 58 pp.Google Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Maheo, G., Rolland, Y. & Guillot, S. 2001. Metamorphic and magmatic evidence for slab breakoff process below NW Himalaya. Journal of Asian Earth Sciences 19, 43–4.Google Scholar
Malavieille, J. & Trullenque, G. 2009. Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: insights from analogue modelling. Tectonophysics 466, 377–94.CrossRefGoogle Scholar
Martin, H., Bonin, B., Capdevila, R., Jahn, B. M., Lameyre, J. & Wang, Y. 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. Journal of Petrology 35, 9831015.CrossRefGoogle Scholar
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. 1997. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. The Island Arc 6, 121–42.CrossRefGoogle Scholar
Maruyama, S. & Seno, T. 1986. Orogeny and relative plate motions: example of the Japanese islands. Tectonophysics 27, 305–29.CrossRefGoogle Scholar
Matsuda, T. & Isozaki, Y. 1991. Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. Tectonics 10, 475–99.CrossRefGoogle Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
McKenzie, D. A. N. & O'Nions, R. K. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.CrossRefGoogle Scholar
Okada, H. & Sakai, T. 1993. Nature and development of Late Mesozoic and Early Cenozoic sedimentary basins in southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 316.CrossRefGoogle Scholar
Pearce, J. A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), pp. 230–49. Nantwich: ShivaGoogle Scholar
Pitcher, W. S. 1997. The Nature and Origin of Granite. London: Chapman & Hall, 387 pp.CrossRefGoogle Scholar
Qiu, J. S., Wang, D. Z. & McInnes, B. I. A. 1999. Geochemistry and petrogenesis of the I- and A-type composite granite masses in the coastal area of Zhejiang and Fujian province. Acta Petrologica Sinica 15, 237–46 (in Chinese).Google Scholar
Qiu, J. S., Wang, D. Z., McInnes, B. I. A., Jiang, S. Y., Wang, R. C. & Kanisawa, S. 2004. Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian Provinces, SE China: age and geochemical constraints on their petrogenesis. Transactions of the Royal Society of Edinburgh: Earth Sciences 95, 227–36.CrossRefGoogle Scholar
Qiu, J. S., Xiao, E., Hu, J., Xu, X. S., Jiang, S. Y. & Li, Z. 2008. Petrogenesis of highly fractionated I-type granites in the coastal area of northeastern Fujian Province: constraints from zircon U–Pb geochronology, geochemistry and Nd–Hf isotopes. Acta Petrologica Sinica 24, 2468–84 (in Chinese).Google Scholar
Renna, M. R., Tribuzio, R. & Tiepolo, M. 2006. Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: clues from the gabbro–granite association of Ota (Corsica–Sardinia batholith). Lithos 90, 92110.CrossRefGoogle Scholar
Renna, M. R., Tribuzio, R. & Tiepolo, M. 2007. Origin and timing of the post-Variscan gabbro–granite complex of Porto (Western Corsica). Contributions to Mineralogy and Petrology 154, 493517.CrossRefGoogle Scholar
Rickwood, P. C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247–63.CrossRefGoogle Scholar
Samson, S. D., Inglis, J. D., D'Lemos, R. S., Admou, H., Blichert-Toft, J. & Hefferan, K. 2004. Geochronological, geochemical, and Nd-Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research 135, 133–47.CrossRefGoogle Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Shand, S. J. 1943. Eruptive Rocks: Their genesis, composition, and classification, with a chapter on meteorites, 2nd ed. London: Thomas Murby and Company, 444 pp.Google Scholar
Shu, L. S. & Xu, M. J. 2002. Geological background of Southeastern China. In Origin of Late Mesozoic Granitic Volcanic-Intrusive Complex and Crust Evolution in Southeastern China (eds Wang, D. Z. & Zhou, X. M.), pp. 121. Beijing: Science Press (in Chinese).Google Scholar
Shen, W. Z., Zhu, J. C., Liu, C. S., Xu, S. J. & Ling, H. F. 1993. Sm–Nd isotopic study of basement metamorphic rocks in south China and its constraint on material sources of granitoids. Acta Petrologica Sinica 9, 115–24 (in Chinese).Google Scholar
Sisson, T. W., Grove, T. L. & Coleman, D. S. 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 126, 81108.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R. & Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research 25, 365–90.CrossRefGoogle Scholar
Takasu, A. & Dallmeyer, R. D. 1990. 40Ar/39Ar mineral age constraints for the tectonothermal evolution of the Sambagawa metamorphic belt, central Shikoku, Japan: a Cretaceous accretionary prism. Tectonophysics 185, 111–39.CrossRefGoogle Scholar
Takasu, A., Wallis, S. R., Banno, S. & Dallmeyer, R. D. 1994. Evolution of the Sambagawa metamorphic belt, Japan. Lithos 33, 119–33.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. 1995. The geochemical composition of the continental crust. Reviews of Geophysics 33, 241–65.CrossRefGoogle Scholar
Tong, W. X. & Tobisch, D. T. 1996. Deformation of granitoid plutons in the Dongshan area, Southeast China: constraints on the physical conditions and timing of movement along the Changle–Nanao shear zone. Tectonophysics 267, 303–16.CrossRefGoogle Scholar
Tulloch, A. J. & Kimbrough, D. L. 2003. Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: Peninsular Ranges batholith of Baja-California and Median batholith of New Zealand. In Tectonic Evolution of Northwestern México and the Southwestern USA (eds Johnson, S. E., Paterson, S. R., Fletcher, J. M., Girty, G. H., Kimbrough, D. L. & Martín-Barajas, A.), pp. 275–95. Geological Society of America Special Paper 374.Google Scholar
Tulloch, A. J., Ireland, T. R., Kimbrough, D. L., Griffin, W. L. & Ramezani, J. 2011. Autochthonous inheritance of zircon through Cretaceous partial melting of Carboniferous plutons: the Arthur River Complex, Fiordland, New Zealand. Contributions to Mineralogy and Petrology 161, 401–21.CrossRefGoogle Scholar
Tulloch, A. J., Ramezani, J., Kimbrough, D. L., Faure, K. & Allibone, A. H. 2009. U-Pb geochronology of mid-Paleozoic plutonism in western New Zealand: implications for S-type granite generation and growth of the east Gondwana margin. Geological Society of America Bulletin 121, 1236–61.CrossRefGoogle Scholar
Uyeda, S. 1983. Comparative subductology. Episodes 2, 1924.CrossRefGoogle Scholar
Vervoort, J. D. & Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533–56.CrossRefGoogle Scholar
Wang, Z. H. 2002. The origin of the Cretaceous gabbros in the Fujian coastal region of SE China: implications for deformation-accompanied magmatism. Contributions to Mineralogy and Petrology 144, 230–40.CrossRefGoogle Scholar
Wang, P. Z., Chen, Y. A., Cao, B. T., Pan, J. D. & Wang, C. Y. 1993. Crust–upper-mantle structure and deep structural setting of Fujian province. Geology of Fujian 12, 79158 (in Chinese).Google Scholar
Wang, X., Griffin, W. L., O'Reilly, S. Y., Zhou, X. M., Xu, X. S., Jackson, S. E. & Pearson, N. J. 2002. Morphology and geochemistry of zircons from late Mesozoic igneous complexes in coastal SE China: implications for petrogenesis. Mineralogical Magazine 66, 235–51.CrossRefGoogle Scholar
Wang, Y. X., Yang, J. D., Tao, X. C. & Li, H. M. 1988. A study of the Sm–Nd method for fossil, mineral and rock samples, and its application. Journal of Nanjing University (Natural Sciences) 21, 297308 (in Chinese).Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Jiang, S. Y. & Shi, Y. R. 2008. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: implications for petrogenesis and post-orogenic extension. Geological Magazine 145, 215–33.CrossRefGoogle Scholar
Weaver, B. L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97.CrossRefGoogle Scholar
Wu, G. Q. 1991. The compositions and evolution of Fuzhou composite intrusion. Acta Petrologica Sinica 7, 81–8 (in Chinese).Google Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D. Y. 2003. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191204.CrossRefGoogle Scholar
Wu, F. Y., Li, X. H., Yang, J. H. & Zheng, Y. F. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica 23, 1217–38 (in Chinese).Google Scholar
Xing, G. F., Lu, Q. D., Chen, R., Zhang, Z. Y., Nie, T. C., Li, L. M., Huang, J. L. & Lin, M. 2008. Study on the ending time of late Mesozoic tectonic regime transition in South China – Comparing to the Yanshan area in North China. Acta Geologica Sinica 82, 451–63 (in Chinese).Google Scholar
Xu, X. S., Dong, C. W., Li, W. X. & Zhou, X. M. 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significance of the gabbro-diorite–granite association. Lithos 46, 299315.CrossRefGoogle Scholar
Xu, Y. G., Ma, J. L., Frey, F. A., Feigenson, M. D. & Liu, J. F. 2005. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology 224, 247–71.CrossRefGoogle Scholar
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., Wang, X. L., Pearson, N. J. & He, Z. Y. 2007. The crust of Cathaysia: age, assembly and reworking of two terranes. Precambrian Research 158, 5178.CrossRefGoogle Scholar
Yang, Z. L., Shen, W. Z., Tao, K. Y. & Shen, J. L. 1999. Sr, Nd and Pb isotopic characteristics of Early Cretaceous basaltic rocks from the coast of Zhejiang and Fujian: evidence for ancient enriched mantle source. Scientia Geologica Sinca 34, 5968 (in Chinese).Google Scholar
Yang, C. H., Xu, W. L., Yang, D. B., Wang, W., Wang, W. D. & Liu, J. M. 2008. Petrogenesis of Shangyu gabbro-diorites in western Shandong: geochronological and geochemical evidence. Science in China Series D: Earth Sciences 51, 481–92.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A., Xie, L. W., Yang, Y. H. & Liu, X. M. 2007. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.CrossRefGoogle Scholar
Yu, J. H. & Shu, L. S. 2002. Metamorphism, magmatism and fault structures in the coastal area of Fujian. In Origin of Late Mesozoic Granitic Volcanic-Intrusive Complex and Crust Evolution in Southeastern China (eds Wang, D. Z. & Zhou, X. M.), pp. 4073. Beijing: Science Press (in Chinese).Google Scholar
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Günther, D., Fontaine, G. H., Liu, X. M. & Diwu, C. R. 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology 247, 100–18.CrossRefGoogle Scholar
Zhang, X. H., Zhang, H. F., Zhai, M. G., Wilde, S. A. & Xie, L. W. 2009. Geochemistry of Middle Triassic gabbros from northern Liaoning, North China: origin and tectonic implications. Geological Magazine 146, 540–51.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters 252, 5671.CrossRefGoogle Scholar
Zhao, J. H., Hu, R. Z. & Liu, S. 2004. Geochemistry, petrogenesis, and tectonic significance of Mesozoic mafic dikes, Fujian province, southeastern China. International Geology Review 46, 542–57.CrossRefGoogle Scholar
Zhao, J. H., Hu, R. Z., Zhou, M. F. & Liu, S. 2007. Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine 144, 937–52.CrossRefGoogle Scholar
Zheng, Y. F., Wu, R. X., Wu, Y. B., Zhang, S. B., Yuan, H. L. & Wu, F. Y. 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research 163, 351–83.CrossRefGoogle Scholar
Zhou, J. C. & Chen, R. 2001. Geochemistry of late Mesozoic interaction between crust and mantle in southeastern Fujian Province. Geochimica 30, 547–58.Google Scholar
Zhou, J. C., Jiang, S. Y., Wang, X. L., Yang, J. H. & Zhang, M. Q. 2006 a. Re–Os isotopic compositions of late Mesozoic mafic rocks from southeastern coast of China. Acta Petrologica Sinica 22, 407–13 (in Chinese).Google Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269–87.CrossRefGoogle Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006 b. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29, 2633.CrossRefGoogle Scholar
Zhou, X. M., Xu, X. S., Dong, C. W. & Li, H. M. 1994. Mineral sign of active continental margin in southeastern China: anorthitic plagioclase. Chinese Science Bulletin 39, 1362–6.Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Zou, H. B. 1995. A mafic–ultramafic rock belt in the Fujian coastal area, southeastern China: a geochemical study. Journal of Southeast Asian Earth Sciences 12, 121–7.CrossRefGoogle Scholar