Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:24:23.463Z Has data issue: false hasContentIssue false

Eocene development of the northerly active continental margin of the Southern Neotethys in the Kyrenia Range, north Cyprus

Published online by Cambridge University Press:  25 September 2013

ALASTAIR H.F. ROBERTSON*
Affiliation:
School of GeoSciences, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, UK
GILLIAN A. McCAY
Affiliation:
School of GeoSciences, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, UK
KEMAL TASLI
Affiliation:
Department of Geological Engineering, Mersin University, Mersin 33343, Turkey
AŞEGÜL YILDIZ
Affiliation:
Department of Geological Engineering, Aksaray University, Aksaray 68100, Turkey
*
Author for correspondence: Alastair.Robertson@ed.ac.uk

Abstract

We focus on an active continental margin related to northwards subduction during the Eocene in which sedimentary melange (‘olistostromes’) forms a key component. Maastrichtian – Early Eocene deep-marine carbonates and volcanic rocks pass gradationally upwards into a thick succession (<800 m) of gravity deposits, exposed in several thrust sheets. The lowest levels are mainly siliciclastic turbidites and debris-flow deposits. Interbedded marls contain Middle Eocene planktonic/benthic foraminifera and calcareous nannofossils. Sandstones include abundant ophiolite-derived grains. The higher levels are chaotic debris-flow deposits that include exotic blocks of Late Palaeozoic – Mesozoic neritic limestone and dismembered ophiolite-related rocks. A thinner sequence (<200 m) in one area contains abundant redeposited Paleogene pelagic limestone and basalt. Chemical analysis of basaltic clasts shows that some are subduction influenced. Basaltic clasts from unconformably overlying alluvial conglomerates (Late Eocene – Oligocene) indicate derivation from a supra-subduction zone ophiolite, including boninites. Taking account of regional comparisons, the sedimentary melange is interpreted to have formed within a flexurally controlled foredeep, floored by continental crust. Gravity flows including large limestone blocks, multiple debris flows and turbidites were emplaced, followed by southwards thrust imbrication. The emplacement was possibly triggered by the final closure of an oceanic basin to the north (Alanya Ocean). Further convergence between the African and Eurasian plates was accommodated by northwards subduction beneath the Kyrenia active continental margin. Subduction zone rollback may have triggered collapse of the active continental margin. Non-marine to shallow-marine alluvial fans prograded southwards during Late Eocene – Oligocene time, marking the base of a renewed depositional cycle that lasted until latest Miocene time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Riyami, K. & Robertson, A. H. F. 2002. Mesozoic sedimentary and magmatic evolution of the Arabian continental margin, northern Syria: evidence from the Baer-Bassit Melange. Geological Magazine 139, 395420.CrossRefGoogle Scholar
American Geological Institute, 1961. Dictionary of Geological Terms. New York: Dolphin Books.Google Scholar
Andrew, T. & Robertson, A. H. F. 2002. The Beyşehir-Hoyran-Hadim Nappes: genesis and emplacement of Mesozoic marginal and oceanic units of the northern Neotethys in southern Turkey. Journal of the Geological Society of London 159, 529–43.CrossRefGoogle Scholar
Bağçi, U., Parlak, O. & Höck, V. 2008. Geochemistry and tectonic environment of divese magma generations forming the crustal units of the Kızıldağ (Hatay) Ophiolite, Southern Turkey. Turkish Journal of Earth Sciences 17, 4371.Google Scholar
Baroz, F. 1979. Etude Géologique dans le Pentadaktylos et la Mesaoria (Chypre Septentrionale). Docteur D'Etat Thesis. Université de Nancy, France, 1 & 2. Published thesis.Google Scholar
Baroz, F. 1980. Volcanism and continent-island arc collision in the Pentadaktylos range, Cyprus. In Proceedings of International Symposium on Ophiolites (ed. Panayiotou, A.), pp. 73–5. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Bouma, A. H. 1962. Sedimentology of some Flysch Deposits: a Graphic Approach to Facies Interpretation. Amsterdam: Elsevier.Google Scholar
Çetnkaplan, M., Candan, O., Okay, A. I., Oberhanslı, R., Koralay, O. E. & Kozlu, H. 2009. Tectonostratigraphy and polimetamorphic evolution of the Alanya Massif. 62nd Geological Kurultai of Turkey, 1317 April 2009, MTA, Ankara, Türkiye. Abstract Book, 26–7.Google Scholar
Chang, C.-P., Angelier, J. & Huang, C. Y. 2000. Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics 325, 4362.CrossRefGoogle Scholar
Clark, M. & Robertson, A. H. F. 2005. Uppermost Cretaceous-Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology 173, 1551.CrossRefGoogle Scholar
Cleintaur, M. R., Knox, G. J. & Ealey, P. J. 1977. The geology of Cyprus and its place in the East-Mediterranean framework. Geologie en Mijnbouw 56, 6682.Google Scholar
Cloos, M. & Shreve, R. L. 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure and Applied Geophysics 128, 455500.CrossRefGoogle Scholar
Clube, T. M. M., Creer, K. M. & Robertson, A. H. F. 1985. The palaeorotation of the Troodos microplate. Nature 317, 522–5.CrossRefGoogle Scholar
Clube, T. M. M. & Robertson, A. H. F. 1986. The palaeorotation of the Troodos microplate, Cyprus, in the Late Mesozoic-Early Cenozoic plate tectonic framework of the Eastern Mediterranean. Surveys in Geophysics 8, 375437.CrossRefGoogle Scholar
Cowan, D. S. & Page, B. M., 1975. Recycled Franciscan material in Franciscan melange west of Paso Robles, California, Geological Society of America Bulletin 86, 1089–95.2.0.CO;2>CrossRefGoogle Scholar
Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (eds Zuffa, G.G.), pp. 333–61. Dordrecht, Netherlands: Reidel.CrossRefGoogle Scholar
Dickinson, W. R. & Suczek, C. A. 1979. Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin 63, 2164–82.Google Scholar
Ducloz, C. 1972. The Geology of the Bellapais-Kyrthrea Area of the Central Kyrenia Range. Cyprus Geological Survey Bulletin 6, 75p.Google Scholar
Evans, D., Harrison, Z., Shannon, P. M., Laberg, J. S., Nielsen, T., Ayers, S., Holmes, R., Hoult, R. J., Lindberg, B. & Haflidason, H. 2005. Palaeoslides and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of NW Europe. Marine and Petroleum Geology 22, 1131–48.CrossRefGoogle Scholar
Falloon, T. J., Danyushevsky, L. V., Crawford, A. J., Meffre, S., Woodhead, J. D. & Bloomer, S. H. 2008. Boninites and adakites from the nortern termination of the Tonga Trench: Implications for adakite petrogenesis. Journal of Petrolgy 49, 497715.Google Scholar
Fitton, J. G. & Godard, M. 2004. Origin and evolution of magmas on the Ontong Java Plateau. In Origin and Evolution of the Ontong Java Plateau (eds Fitton, J.G., Mahoney, J.J., Wallace, P.J. & Saunders, A.D.). pp. 151–78. Geological Society of London, Special Publication no. 229.Google Scholar
Fitton, J. G., Saunders, A. D., Larsen, L. M., Hardarson, B. S. & Norry, M. S. 1998. Volcanic rocks of the southeast Greenland margin. Proceedings of the Ocean Drilling Program, Scientific Results 152, 331–50.Google Scholar
Gass, I. G. 1990. Ophiolites and ocean lithosphere. In Ophiolites Oceanic Crustal Analogues. Proceedings of the Symposium,‘Troodos 1987’. (eds Malpas, J., Moores, E.M., Panayiotou, A. & Xenophontos, C.), pp. 110. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Gass, I. G., MacLeod, C. J., Murton, B. J., Panayiotou, A., Simonian, K. O. & Xenophontos, C. 1994. The geology of the South Troodos Transform Fault Zone. Geological Survey Department, Cyprus, Memoir 9, 218 p.Google Scholar
Geological Map of Cyprus, 1979. Scale 1:250,000. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Gilbert, M. & Robertson, A. H. F. 2013. Upper Cretaceous volcaniclastic sedimentation in W Cyprus: evidence for a Southern Neotethyan volcanic arc. In Geological Development of the Anatolian continent and the Eastern Mediterranean region (eds Robertson, A.H.F., Parlak, O. & Ünlügenç, Ü.), pp. 273–98. Geological Society of London, Special Publication no. 372.Google Scholar
Gökçen, S. L., Kelling, G., Gökçen, N. & Floyd, P. A. 1988. Sedimentology of a Late Cenozoic collisional sequence: the Misis Complex, Adana, southern Turkey. Sedimentary Geology 59, 205–35.CrossRefGoogle Scholar
Görür, N., Okay, A. I., Şengör, A. M. C., Tüysüz, O., Sakınç, M., Yiğitbaş, E., Akkök, R., Barka, A., Oktay, F. Y., Sarıca, N., Yaltırak, C., Yılmaz, B., Ersoy, S., Elmas, A., Örçen, S., Ercan, T., Şaroğlu, F., Akyürek, B. 1998. Triassic to Miocene Palaeogeographic Atlas of Turkey. Ankara: MTA Enstitüsü (General Directorate of Mineral Research and Exploration).Google Scholar
Görür, N., Oktay, F. Y., Seymen, I. & Şengör, A. M. C. 1984. Paleo-tectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 467–82. Geological Society of London, Special Publication no. 17.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geological Time Scale. Cambridge: Cambridge University Press.Google Scholar
Graham, S. A., Inresoll, R. V. & Dickinson, W. R. 1976. Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. Journal of Sedimentary Petrology 24, 620–32.Google Scholar
Hakyemez, A. & Özkan-Altıner, S. 2007. Beşparmak Dağları’ndaki (Kuzey Kıbrıs) Üst Maastrihtiyen-Eosen İstifinin Planktonik Foraminifer Biyostratigrafisi (Planktonic foraminiferal biostratigraphy of the Upper Maastrichtian – Eocene sequence in the Beşparmak Range, Northern Cyprus). 60th Geological Congress of Turkey, Ankara, Abstract, p. 416–19.Google Scholar
Hakyemez, Y., Turhan, N., Sönmez, İ. & Sümengen, M. 2002. Kuzey Kıbrıs Türk Cumhuriyeti'nin Jeolojisi (Geology of the Northern Cyprus Turkish Republic). Ankara: Mineral Research and Exploration Institute of Turkey, 44 pp.Google Scholar
Harrison, R. W., Newell, W. L., Batihanli, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Ozhur, A., Tsiolakis, E. & Necdet, M. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23, 191210.CrossRefGoogle Scholar
Haughton, P., Davis, C., MCaffrey, W. & Baker, S. 2009. Hybrid sediment gravity flow deposits-Classification, origin and significance. Marine and Petroleum Geology 26, 1900–18.CrossRefGoogle Scholar
Henson, F. R. S., Browne, R. V. & McGinty, J. 1949. A synopsis of the stratigraphy and geological history of Cyprus. Quarterly Journal of the Geological Society of London CV, 237.Google Scholar
Hodgson, E., Morris, A., Anderson, M. & Robertson, A. H. F. 2010. First palaeomagnetic results from the Kyrenia Range terrane of northern Cyprus. Vienna: European Union of Geosciences, Published Abstract.Google Scholar
Huang, K., Malps, J. & Xenophontos, C. 2007. Geological studies of igneous rocks and their relationships along the Kyrenia Range. In Abstracts of the 6th International Congress of Eastern Mediterranaen Geology April 2–5 2007 (eds Moumani, K., Shawabkeh, K., Al-Malabeh, A. & Abdelghafoor, M.), p. 53, Amman, Jordan.Google Scholar
Huhnerbach, V. & Masson, D. G. 2004. Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Marine Geology 213, 343–62.CrossRefGoogle Scholar
Hüsing, S. K., Zachariasse, W.-J., Van Hinsbergen, D. J. J., Krijgsman, W., İnceöz, M., Harzhauser, M., Mandic, O., Kroh, A. 2009. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the central Tethys gateway. In Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone (eds Van Hinsbergen, D. J. J., Edwards, M. A. & Govers, R.), pp. 107–32. Geological Society of London, Special Publication no. 311.Google Scholar
Inwood, J., Morris, A., Anderson, M. W. & Robertson, A. H. F. 2009. Neotethyan intraoceanic microplate rotation and variations in spreading axis orientation: palaeomagnetic evidence from the Hatay ophiolite (southern Turkey). Earth and Planetary Science Letters 280, 105–17.CrossRefGoogle Scholar
Jin, X. & Yang, X. 2004. Palaeogeographic implications of the Shanita-Hemigordius fauna (Permian foramininifer) in the reconstruction of Permian Tethys. Episodes, 24 (4), 273–8.CrossRefGoogle Scholar
Karaoğlan, F., Parlak, O., Robertson, A., Thoni, M., Klötzli, U., Koller, F. & Okay, A. İ. 2013. Evidence of Eocene HT/HP metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia). In Geological Development of the Anatolian Continent and the Eastern Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, Ü.). Geological Society of London, Special Publication no. 372.Google Scholar
Kelling, G., Gökçen, S. L., Floyd, P. A. & Gökçen, N. 1987. Neogene tectonics and plate convergence in the eastern Mediterranean: new data from southern Turkey. Geology 15, 249–72.2.0.CO;2>CrossRefGoogle Scholar
Liu, G. & Einsele, G. 1996. Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet). Sedimentary Geology 104, 203–26.CrossRefGoogle Scholar
Lord, A. R., Harrison, R. W., BouDagher-Fadel, M., Stone, B. D. & Varol, O. 2009. Miocene mass-transport sediments, Troodos Massif, Cyprus. Proceedings of the Geologists Association 120, 133–8.CrossRefGoogle Scholar
Mackintosh, P. W. & Robertson, A. H. F. 2013. Structural development and restoration of the north-Gondwana margin in the central Taurides, Turkey. In Geological Development of the Anatolian Continent and the Eastern Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, Ü.), pp. 299322. Geological Society of London, Special Publication no. 372.Google Scholar
MacLeod, C. & Murton, B. J. 1993. Structure and tectonic evolution of the Southern Troodos Transform Fault Zone, Cyprus. In Magmatic Processes and Plate Tectonics. (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 141–76. Geological Society of London, Special Publication no. 76.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary Calcareous nannoplankton zonation. In Proceedings of the Second Plankton Conference, Rome, 1970 (ed. Farinacci, A.), pp. 739–85. Rome: Edizioni Tecnoscienza, vol. 2.Google Scholar
McCay, G. A. & Robertson, A. H. F. 2012. Sedimentology and provenance of Upper Eocene-Upper Miocene clastic sediments of the Girne (Kyrenia) Range, northern Cyprus: depositional processes along the northerly, active margin of the Southern Neotethys. Sedimentary Geology 265–6, 3055.CrossRefGoogle Scholar
McCay, G. A. & Robertson, A. H. F. 2013. Upper Miocene-Pleistocene deformation of the Girne (Kyrenia) Range and Dar dere (Ovgos) lineaments, N Cyprus: role in collision and tectonic escape in the easternmost Mediterranean region. In Geological Development of the Anatolian Continent and the Eastern Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, Ü.), pp. 421–5. Geological Society of London, Special Publication no. 372.Google Scholar
McCay, G. A., Robertson, A. H. F., Kroon, D., Rafffi, I., Ellam, R. M. & Necdet, M. 2013. Implications of new 87Sr/86Sr isotopic, nannoplankton and foraminiferal dating for Neogene sedimentation in the northern part of Cyprus. Geological Magazine 150, 333–59.CrossRefGoogle Scholar
Morris, A., Anderson, M. W., Inwood, J. & Robertson, A. H. F. 2006. Palaeomagnetic insights into the evolution of Neotethyan oceanic crust in the eastern Mediterranean. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A.H.F. & Mountrakis, D.), pp. 351–72. Geological Society of London, Special Publication no. 260.Google Scholar
MTA, 2002. Geological Map of Turkey 1:500,000. Ankara: Maden Tektik ve Arama Genel Müdürlüğü (General Directorate of Mineral Research and Exploration).Google Scholar
Mulder, T. & Cochonat, P. 1996. Classification of offshore mass movements Journal of Sedimentary Research 66, 4357.Google Scholar
Mullen, E. D. 1983. MnO/TiO2/P2O5: a minor element discrimination for basaltic rocks of oceanic environment and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.CrossRefGoogle Scholar
Mutti, E. & Ricci Lucchi, F. 1975. Turbidite facies and facies associations. Examples of turbidite facies and facies association from selected formations of the Northern Apennines. Field Trip Guidebook, pp. 21–36, 9th Congress of the International Association of Sedimentologists, Nice.Google Scholar
Mutti, E. & Ricci Lucchi, F. 1978. Turbidites of the northern Apennines: introduction to facies analysis. International Geology Review 20, 125–66.CrossRefGoogle Scholar
Okay, A. İ. & Özgül, N. 1984. HP/LT metamorphism and the structure of the Alanya Massif, Southern Turkey: an allochthonous composite tectonic sheet. In Geological Evolution of the Eastern Mediterranean (eds Dixon, J.E. & Robertson, A.H.F.), pp. 415–29. Geological Society Of London, Special Publication no. 17.Google Scholar
Özgül, N. 1984. Geology of the Alanya tectonic window and its western part. TJK Ketin Sempozyumu (Turkish Gelogical Society Ketin Symposium), 97120 (in Turkish).Google Scholar
Özgül, N. 1997. Stratigraphy of the tectonic-stratigeraphic units in the region Bozkır-Hadim-Taşkent (northern central Taurides). Maden Tetkik ve Arama Dergisi 119, 113–74 (in Turkish).Google Scholar
Parlak, O. 2006. Geodynamic significance of granitoid magmatism in southeast Anatolia: geochemical and geochronological evidence from the Göksun–Afşin (Kahramanmaraş, Turkey) region. International Journal of Earth Sciences 95, 609–27.CrossRefGoogle Scholar
Parlak, O., Höck, V., Kozlu, H. & Delaloye, M. 2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic belt (Turkey). Geological Magazine 141, 583603.CrossRefGoogle Scholar
Parlak, O., Karaoğlan, F., Rızaoğlu, T., Klötzli, U., Koller, F. & Billor, Z. 2012 U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: Implications for the evolution of the Inner Tauride suture. Journal of Geodynamics, http://dx.doi.org/10.1016/j.jog.2012.06.012.Google Scholar
Parlak, O. & Robertson, A. H. F. 2004. The ophiolite-related Mersin Melange, southern Turkey: its role in the tectonic-sedimentary setting of Tethys in the Eastern Mediterranean. Geological Magazine 141, 257–86.CrossRefGoogle Scholar
Pearce, J. A. 1975. Basalt geochemistry used to investigate past tectonic environments in Cyprus. Tectonophysics 25, 4167.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In Orogenic Andesites and Related Rocks (ed. Thorpe, R.S.), pp. 525–48. Chichester: J. Wiley & Sons.Google Scholar
Pearce, J. A. 1996. A users guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. (ed Wyman, D.A.), pp. 79113. Geological Association of Canada, Geochemistry Short Course Notes no. 12.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basaltic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. 2005. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystems 6, Q07006, doi:10.1029/2004GC000895.CrossRefGoogle Scholar
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., Berggren, W. A. (eds) 2006. Atlas of Eocene Planktonic Foraminifera. Cushman Foundation, Special Publication no. 41.Google Scholar
Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 427554. Cambridge: Cambridge University Press.Google Scholar
Perinçek, D. & Kozlu, H. 1984. Stratigraphical and structural relations of the units in the Afşin-Elbistan-Doğanşehir region (Eastern Taurus). In Geology of the Taurus Belt (eds Tekeli, O. & Göncüoğlu, M. C.), pp. 181–98. Proceedings of International Symposium, MTA, Ankara.Google Scholar
Phillips-Lander, C. M. & Dilek, Y. 2009. Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania. Lithos 108, 192206.CrossRefGoogle Scholar
Pickering, K. T., Hiscott, R. N. & Hien, F. J. 1989. Deep Marine Environments: Clastic Sedimentation and Tectonics. London: Unwin Hyman.Google Scholar
Raymond, L. A. (ed.) 1984. Melanges: Their Nature, Origin and Significance. Geological Society of America, Special Paper 198.Google Scholar
Reichel, M. 1945 a. Sur un Miliolide nouveau du Permien de l'ile de Chypre. Verhandlungen der Naturforschenden Gesellschaft im Basel 56, 521–30.Google Scholar
Reichel, M. 1945 b. Sur quelques foraminiferes nouveaux du Permien Mediterranean. Eclogae Geologicae Helvetiae 38, 524–60.Google Scholar
Rızaoğlu, T., Parlak, O., Höck, V. & İşler, F. 2006. Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A.H.F & Mountrakis, D.), pp. 327–50. Geological Society of London, Special Publication no. 260.Google Scholar
Rızaoğlu, T., Parlak, O., Höck, V., Koller, F., Hames, W. E. & Billor, Z. 2009. Andean-type active margin formation in the eastern Taurides: Geochemical and geochronogical evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics 473, 188207.CrossRefGoogle Scholar
Robertson, A. H. F. 1977 a. The Moni Melange, Cyprus: an olistostrome formed at a destructive plate margin. Journal of the Geological Society London 133, 447–66.CrossRefGoogle Scholar
Robertson, A. H. F. 1977 b. Tertiary uplift history of the Troodos massif, Cyprus. Geological Society of America Bulletin 88, 1763–72.2.0.CO;2>CrossRefGoogle Scholar
Robertson, A. H. F. 1977 c. The Kannaviou Formation, Cyprus: volcaniclastic sedimentation of a probable Late Cretaceous volcanic arc. Journal of Geological Society of London 134, 269–92.CrossRefGoogle Scholar
Robertson, A. H. F. 1993. Mesozoic-Tertiary sedimentary and tectonic evolution of Neotethyan carbonate platorms, margins and small ocean basins in the Antalya complex, S.W. Turkey. In Tectonic Controls and Signatures in Sedimentary Successions (eds Frostick, L. & Steel, R.), pp. 415–65. International Association of Sedimentologists, Special Publication no. 20.Google Scholar
Robertson, A. H. F. 1998. Mesozoic–Cenozoic tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Robertson, A. H. F., Emeis, K.-C. & Camerlenghi, A. eds), pp. 723–82.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J. & Jones, G. 1991. Palaeogeographical and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeoceanography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 174. Geological Society of London, Special Publication no. 17.Google Scholar
Robertson, A. H. F. & Ocean Drilling Program Leg 160 Scientific Party. 1996. Mud volcanism on the Mediterranean Ridge: Initial results of Ocean Drilling Program Leg 160. Geology 24, 239–42.2.3.CO;2>CrossRefGoogle Scholar
Robertson, A. H. F., Parlak, O. & Ustaömer, T. 2009. Melange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride-Anatolide continent, central and western. In Geodynamics of Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone (eds van Hinsbergen, D. J. J., Edwards, M. A. & Gowers, G.), pp. 966. Geological Society of London, Special Publication no. 311.Google Scholar
Robertson, A. H. F., Parlak, O. & Ustaömer, T. 2012 a. Overview of the Palaeozoic- Neogene evolution of Neotethys in the Eastern Mediterranean region (S Turkey, Cyprus, Syria. Petroleum Geoscience 18, 381404.CrossRefGoogle Scholar
Robertson, A. H. F., Parlak, O. & Ustaömer, T. 2013. Late Palalaeozoic-Early Cenozoic tectonic development of Southern Turkey and the easternmost Mediterranean region: evidence from the inter-relations of continental and oceanic units. In Geological Development of Anatolia and the Eastern Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, Ü.), pp. 948. Geological Society of London, Special Publication no. 372.Google Scholar
Robertson, A. H. F., Taslı, K. & İnan, N. 2012 b. Evidence from the Kyrenia Range, Cyprus, of the northerly active margin of the Southern Neotethys during Late Cretaceous–Early Cenozoic time. Geological Magazine 149, 264–90.CrossRefGoogle Scholar
Robertson, A. H. F., Unlügenç, Ü. C., İnan, N. & Taslı, K. 2004. The Misis–Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey. Journal of Asian Earth Sciences 22, 413–53.CrossRefGoogle Scholar
Robertson, A. H. F., Ustaömer, T., Parlak, O., Unlügenç, U. C., Taslı, K. & İnan, N. 2006. The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences 27, 108–45.CrossRefGoogle Scholar
Robertson, A. H. F. & Woodcock, N. H. 1980. Tectonic setting of the Troodos massif in the east Mediterranean. In Proceedings International Ophiolite Symposium (ed. Panayiotou, A.), pp. 3649. Cyprus: Geological Survey Department.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1986. The role of the Kyrenia Range lineament, Cyprus, in the geological evolution of the Eastern Mediterranean area. In Major Crustal Lineaments and their Influence on the Geological History of the Continental Lithosphere (eds Reading, H. G., Watterson, J. & White, S. H.), Philosophical Transactions of the Royal Society of London, Series A, 317, 141–71.Google Scholar
Robinson, P. T. & Malpas, J. 1990. The Troodos Ophiolite of Cyprus: new perspectives on its origin and emplacement. In Ophiolites: Oceanic Crustal Analogues (eds Moores, E.M., Panayiotou, A., & Xenophontos, C.), pp. 1336. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Şengör, A. M. C. 2003. The repeated rediscovery of melanges and its implications for the possibility and the role of objective evidence in the scientific enterprise. In Ophiolite Concept and the Evolution of Geological Thought (eds Dilek, Y. & Newcomb, S.), pp. 85445. Geological Society of America, Special Paper no. 373.Google Scholar
Şengör, A. M. C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75, 181241.CrossRefGoogle Scholar
Suczek, C. A. & Ingersoll, R. V. 1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP Sites 211 and 218. Journal of Sedimentary Research 49, 1217–28.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–47. Geological Society of London, Special Publication no. 42.Google Scholar
Swarbrick, R. E. & Naylor, M. A. 1980. The Kathikas Melange south-west Cyprud; late Cretaceous submarine debris flows. Sedimentology 27, 6378.CrossRefGoogle Scholar
Taira, A., Tokuyama, H. & Soh, W. 1989. Accretion tectonics and evolution of Japan. In The Evolution of the Pacific Ocean Margins (ed. Ben-Avraham, Z.), pp. 100–23. Oxford: Oxford University Press.Google Scholar
Varol, O. 1999. Paleogene. In Calcareous Nannofossil Biostratigraphy (ed Bown, P. R.), British Micropaleontological Society, Publications Series, 314 pp.Google Scholar
Verdel, C., Wernicke, B. P., Hassanzadeh, P. R. & Guest, B. 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30, doi:10.1029/2010TC002809, 2011.CrossRefGoogle Scholar
Verdel, C., Wernicke, B. P., Ramezani, J., Hassanzadeh, J., Renne, P. R. & Spell, T. L. 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America, Bulletin 119, 961–77.CrossRefGoogle Scholar
Williams, P. R., Pigram, C. J. & Dow, D. B. 1984. Melange production and the importance of shale diapirism in accretionary terranes. Nature 309, 145–6.CrossRefGoogle Scholar
Woodcock, N. H. & Robertson, A. H. F. 1982. Wrench and thrust tectonics along a Mesozoic-Cenozoic continental margin: Antalya Complex, SW Turkey. Journal of the Geological Society London 139, 147–63.CrossRefGoogle Scholar
Yazgan, E. & Chessex, R. 1991. Geology and tectonic evolution of the Southeastern Taurides in the region of Malatya. Bulletin of Turkish Association of Petroleum Geologists 3 (1), 142.Google Scholar
Yılmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105, 251–71.2.3.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Robertson Supplementary Material

Supplementary Material

Download Robertson Supplementary Material(File)
File 43 KB
Supplementary material: File

Robertson Supplementary Material

Supplementary Material

Download Robertson Supplementary Material(File)
File 73.7 KB
Supplementary material: File

Robertson Supplementary Material

Table

Download Robertson Supplementary Material(File)
File 25.1 KB
Supplementary material: File

Robertson Supplementary Material

Table

Download Robertson Supplementary Material(File)
File 44.5 KB