Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:23:58.387Z Has data issue: false hasContentIssue false

MODULAR DECOMPOSITION NUMBERS OF CYCLOTOMIC HECKE AND DIAGRAMMATIC CHEREDNIK ALGEBRAS: A PATH THEORETIC APPROACH

Published online by Cambridge University Press:  03 July 2018

C. BOWMAN
Affiliation:
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK; C.D.Bowman@kent.ac.uk
A. G. COX
Affiliation:
Department of Mathematics, City, University of London, London, UK; A.G.Cox@city.ac.uk

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2018

References

Andersen, H. H., ‘The strong linkage principle’, J. Reine Angew. Math. 315 (1980), 5359.Google Scholar
Andersen, H. H., ‘Tilting modules for algebraic groups’, inAlgebraic Groups and their Representations (Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517 (Kluwer Acad. Publ., Dordrecht, 1998), 2542.CrossRefGoogle Scholar
Ariki, S., ‘Proof of the modular branching rule for cyclotomic Hecke algebras’, J. Algebra 306(1) (2006), 290300.Google Scholar
Bowman, C., ‘The many graded cellular bases of Hecke algebras’, Preprint, 2016, arXiv:1702.06579.Google Scholar
Bowman, C., Cox, A. and Speyer, L., ‘A family of graded decomposition numbers for diagrammatic Cherednik algebras’, Int. Math. Res. Not. IMRN 9 (2017), 26862734.Google Scholar
Bowman, C. and Speyer, L., ‘An analogue of row removal for diagrammatic Cherednik algebras’, Preprint, 2016, arXiv:1601.05543.Google Scholar
Bowman, C. and Speyer, L., ‘Kleshchev’s decomposition numbers for diagrammatic Cherednik algebras’, Trans. Amer. Math. Soc. 370(5) (2018), 35513590.CrossRefGoogle Scholar
Brundan, J., ‘Modular branching rules and the Mullineux map for Hecke algebras of type A ’, Proc. Lond. Math. Soc. (3) 77(3) (1998), 551581.Google Scholar
Brundan, J. and Kleshchev, A., ‘Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras’, Invent. Math. 178(3) (2009), 451484.CrossRefGoogle Scholar
Brundan, J. and Stroppel, C., ‘Highest weight categories arising from Khovanov’s diagram algebra. II. Koszulity’, Transform. Groups 15(1) (2010), 145.Google Scholar
Brundan, J. and Stroppel, C., ‘Highest weight categories arising from Khovanov’s diagram algebra III: category 𝓞’, Represent. Theory 15 (2011), 170243.Google Scholar
Norton, E., Bowman, C. and Simental, J., ‘Characteristic-free bases and BGG resolutions of unitary simple modules for quiver Hecke and Cherednik algebras’, Preprint, 2018, arXiv:1803.08736.Google Scholar
Carter, R. W. and Lusztig, G., ‘On the modular representations of the general linear and symmetric groups’, Math. Z. 136 (1974), 193242.Google Scholar
Carter, R. W. and Payne, M. T. J., ‘On homomorphisms between Weyl modules and Specht modules’, Math. Proc. Cambridge Philos. Soc. 87(3) (1980), 419425.Google Scholar
Chuang, J., Miyachi, H. and Tan, K. M., ‘Kleshchev’s decomposition numbers and branching coefficients in the Fock space’, Trans. Amer. Math. Soc. 360(3) (2008), 11791191 (electronic).CrossRefGoogle Scholar
Cox, A., Graham, J. and Martin, P., ‘The blob algebra in positive characteristic’, J. Algebra 266(2) (2003), 584635.CrossRefGoogle Scholar
Deodhar, V. V., ‘On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan–Lusztig polynomials’, J. Algebra 111(2) (1987), 483506.CrossRefGoogle Scholar
Dipper, R., James, G. and Mathas, A., ‘Cyclotomic q-Schur algebras’, Math. Z. 229(3) (1998), 385416.CrossRefGoogle Scholar
Donkin, S., The q-Schur Algebra, London Mathematical Society Lecture Note Series, 253 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Erdmann, K., ‘Representations of GL n (K) and symmetric groups’, inRepresentation Theory of Finite Groups (Columbus, OH, 1995), Ohio State Univ. Math. Res. Inst. Publ., 6 (de Gruyter, Berlin, 1997), 6784.Google Scholar
Fayers, M., ‘Weight two blocks of Iwahori–Hecke algebras of type B’, J. Algebra 303(1) (2006), 154201.CrossRefGoogle Scholar
Fayers, M. and Speyer, L., ‘Generalised column removal for graded homomorphisms between Specht modules’, J. Algebraic Combin. 44(2) (2016), 393432.Google Scholar
Goodman, F. and Wenzl, H., ‘A path algorithm for affine Kazhdan–Lusztig polynomials’, Math. Z. 237(2) (2001), 235249.Google Scholar
Härterich, M., ‘Murphy bases of generalized Temperley–Lieb algebras’, Arch. Math. (Basel) 72(5) (1999), 337345.Google Scholar
Hu, J. and Mathas, A., ‘Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A ’, Adv. Math. 225(2) (2010), 598642.Google Scholar
Hu, J. and Mathas, A., ‘Quiver Schur algebras for linear quivers’, Proc. Lond. Math. Soc. (3) 110(6) (2015), 13151386.Google Scholar
James, G. and Mathas, A., ‘The Jantzen sum formula for cyclotomic q-Schur algebras’, Trans. Amer. Math. Soc. 352(11) (2000), 53815404.Google Scholar
Jantzen, J. C., ‘über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren’, J. Algebra 49(2) (1977), 441469.Google Scholar
Kac, V., Infinite Dimensional Lie Algebras, 3rd edn (Cambridge University Press, Cambridge, 1990).Google Scholar
Khovanov, M. and Lauda, A., ‘A diagrammatic approach to categorification of quantum groups. I’, Represent. Theory 13 (2009), 309347.CrossRefGoogle Scholar
Kleshchev, A. S., ‘Branching rules for modular representations of symmetric groups. II’, J. Reine Angew. Math. 459 (1995), 163212.Google Scholar
Kleshchev, A., ‘Completely splittable representations of symmetric groups’, J. Algebra 181(2) (1996), 584592.CrossRefGoogle Scholar
Kleshchev, A., ‘On decomposition numbers and branching coefficients for symmetric and special linear groups’, Proc. Lond. Math. Soc. (3) 75(3) (1997), 497558.CrossRefGoogle Scholar
Kleshchev, A. and Nash, D., ‘An interpretation of the Lascoux–Leclerc–Thibon algorithm and graded representation theory’, Comm. Algebra 38(12) (2010), 44894500.Google Scholar
Kleshchev, A. and Ram, A., ‘Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words’, Math. Ann. 349(4) (2011), 943975.CrossRefGoogle Scholar
Koppinen, M., ‘Homomorphisms between neighbouring Weyl modules’, J. Algebra 103(1) (1986), 302319.CrossRefGoogle Scholar
Losev, I., ‘Proof of Varagnolo–Vasserot conjecture on cyclotomic categories 𝓞’, Selecta Math. 22(2) (2016), 631668.CrossRefGoogle Scholar
Lyle, S. and Mathas, A., ‘Blocks of cyclotomic Hecke algebras’, Adv. Math. 216(2) (2007), 854878.Google Scholar
Lyle, S. and Mathas, A., ‘Cyclotomic Carter–Payne homomorphisms’, Represent. Theory 18 (2014), 117154.Google Scholar
Lyle, S. and Ruff, O., ‘Graded decomposition numbers of Ariki–Koike algebras for blocks of small weight’, J. Pure Appl. Algebra 220(6) (2016), 21122142.Google Scholar
Lusztig, G., ‘Hecke algebras and Jantzen’s generic decomposition patterns’, Adv. Math. 37(2) (1980), 121164.Google Scholar
Lusztig, G., ‘On the character of certain irreducible modular representations’, Represent. Theory 19 (2015), 38.CrossRefGoogle Scholar
Martin, P. and Woodcock, D., ‘On the structure of the blob algebra’, J. Algebra 225(2) (2000), 957988.Google Scholar
Martin, P. and Woodcock, D., ‘Generalized blob algebras and alcove geometry’, LMS J. Comput. Math. 6 (2003), 249296.Google Scholar
Rouquier, R., ‘2-Kac–Moody algebras’, Preprint, 2008a, arXiv:0812.5023.Google Scholar
Rouquier, R., ‘ q-Schur algebras and complex reflection groups’, Mosc. Math. J. 8(1) (2008b), 119158, 184.Google Scholar
Rouquier, R., Shan, P., Varagnolo, M. and Vasserot, E., ‘Categorifications and cyclotomic rational double affine Hecke algebras’, Invent. Math. 204(3) (2016), 671786.Google Scholar
Ruff, O., ‘Completely splittable representations of symmetric groups and affine Hecke algebras’, J. Algebra 305(2) (2006), 11971211.CrossRefGoogle Scholar
Riche, S. and Williamson, G., ‘Tilting modules and the $p$ -canonical basis’, Preprint, 2016, arXiv:1512.08296.Google Scholar
Soergel, W., ‘Kazhdan–Lusztig polynomials and a combinatoric for tilting modules’, Represent. Theory 1 (1997), 83114 (electronic).CrossRefGoogle Scholar
Tan, K. M. and Teo, W. H., ‘Sign sequences and decomposition numbers’, Trans. Amer. Math. Soc. 365(12) (2013), 63856401.CrossRefGoogle Scholar
Webster, B., ‘Rouquier’s conjecture and diagrammatic algebra’, Forum Math. Sigma 5 (2017), e27, 71.Google Scholar
Williamson, G., ‘On an analogue of the James conjecture’, Represent. Theory 18 (2014), 1527.Google Scholar