Published online by Cambridge University Press: 13 August 2019
A result of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (a pair of Katz’s $2$-variable $p$-adic $L$-functions) and algebraic objects (two ‘everywhere unramified’ Iwasawa modules) involving codimension two cycles in a $2$-variable Iwasawa algebra. We prove a result by considering the restriction to an imaginary quadratic field $K$ (where an odd prime $p$ splits) of an elliptic curve $E$, defined over $\mathbb{Q}$, with good supersingular reduction at $p$. On the analytic side, we consider eight pairs of $2$-variable $p$-adic $L$-functions in this setup (four of the $2$-variable $p$-adic $L$-functions have been constructed by Loeffler and a fifth $2$-variable $p$-adic $L$-function is due to Hida). On the algebraic side, we consider modifications of fine Selmer groups over the $\mathbb{Z}_{p}^{2}$-extension of $K$. We also provide numerical evidence, using algorithms of Pollack, towards a pseudonullity conjecture of Coates–Sujatha.