Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T16:56:04.074Z Has data issue: false hasContentIssue false

Kaolin particle film mitigates supra-optimal temperature stress effects at leaf scale and increases bean size and productivity of Coffea canephora

Published online by Cambridge University Press:  31 July 2023

Deivisson Pelegrino de Abreu
Affiliation:
Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
Newton de Matos Roda
Affiliation:
Department of Exact, Environmental and Technological Sciences (CEATEC), Pontifical Catholic University of Campinas (PUC), Campinas, SP, Brazil
Cesar Abel Krohling
Affiliation:
Institute Capixaba for Research, Marechal Floriano, ES, Brazil
Eliemar Campostrini
Affiliation:
Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
Miroslava Rakocevic*
Affiliation:
Laboratory for Plant Genetic Breeding (LMGV), State University of the North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
*
Corresponding author: Miroslava Rakocevic; Email: mima.rakocevic61@gmail.com

Summary

In young plants of Coffea canephora, fine particle film based on calcined kaolin (KF) causes a decrease in leaf temperature (Tleaf), minimizing the damages to the photochemical apparatus, especially in summer season, but no report about the ecophysiological responses to KF over phenology is available on this species. We hypothesized that greater ecophysiological effects of KF would occur during the summer phenophase of leaf area and berry expansion (BE) compared with autumn berry maturation phase (BR), and that those benefits will have impact on bean productivity and physical quality. In this sense, the present study aimed to analyze the effects of KF on some ecophysiological parameters in the last phenophases of C. canephora biennial cycle, bean productivity, and bean size classification. During the complete phenological cycle, eight applications of KF were performed, totaling 80 kg of KF ha−1 in two years. KF applications and ecophysiological measurements occurred during the BE and BR phenophases. Firstly, we documented temporal dynamics in responses of field-grown C. canephora adult plants to KF application. KF reduced Tleaf and crop water stress index and increased the thermal index of relative stomatal conductance and relative chlorophyll content (SPAD index) observed in the autumn BR (opposite to young plants). The positive impact of KF on chlorophyll a fluorescence was proportionally similar among the observed phenophases. Secondly, KF increased bean size 16 by 50% and increased total productivity. The plants treated with KF increased productivity by 1.7 t ha commercially useful bean mass compared to the control. The kaolin dose of 40 kg ha−1 distributed four times per year was highly effective as a protection strategy against high-light and elevated Tair.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo Ogiela, H.M.A. (2020). Effect of kaolin foliar on fruit sunburn, yield and fruit quality of persimmon trees. Menoufia Journal of Plant Production 5, 181194.CrossRefGoogle Scholar
Abou-Khaled, A., Hagan, R.M. and Davenport, D.C. (1970). Effects of kaolinite as a reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water-use efficiency. Water Resources Research 6, 280289.CrossRefGoogle Scholar
Abreu, D.P. de, Roda, N.M., Abreu, G.P. de, Bernado, W.P. de, Rodrigues, W.P., Campostrini, E. and Rakocevic, M. (2022). Kaolin film increases gas exchange parameters of coffee seedlings during transference from nursery to full sunlight. Frontiers in Plant Science 12, 784482.CrossRefGoogle ScholarPubMed
Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.D.M. and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Anthony, F., Bertrand, B., Etienne, H. and Lashermes, P. (2011). Coffea and Psilanthus. In Kole, C. (eds), Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer, pp. 4162.CrossRefGoogle Scholar
Appenroth, K.J., Stöckel, J., Srivastava, A. and Strasser, R. (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution 115, 4964.CrossRefGoogle ScholarPubMed
Baker, N.R., Harbinson, J. and Kramer, D.M. (2007). Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell & Environment 30, 11071125.CrossRefGoogle ScholarPubMed
Bernado, W.P. de, Baroni, D.F., Ruas, K.F., Santos, A.R., de Souza, S.B., Passos, L.C., Façanha, A.R., Ramalho, J.C., Campostrini, E., Rakocevic, M. and Rodrigues, W.P. (2022). Ultraviolet radiation underlies metabolic energy reprograming in Coffea arabica and Coffea canephora genotypes. Scientia Horticulturae 295, 110881.CrossRefGoogle Scholar
Bernado, W.P. de, Rakocevic, M., Santos, A.R., Ruas, K.F., Baroni, D.F., Abraham, A.C., Pireda, S., Oliveira, D.S., Cunha, M.D., Ramalho, J.C., Campostrini, E. and Rodrigues, W.P. (2021). Biomass and leaf acclimations to ultraviolet solar radiation in juvenile plants of Coffea arabica and C. canephora. Plants 10, 640.CrossRefGoogle Scholar
Bernardo, S., Dinis, L.-T., Luzio, A., Machado, N., Vives-Peris, V., López-Climent, M.F., Gomez-Cadenas, A., Zacarías, L., Rodrigo, M.J., Malheiro, A.C., Correia, C. and Moutinho-Pereira, J. (2021a). Particle film technology modulates xanthophyll cycle and photochemical dynamics of grapevines grown in the Douro Valley. Plant Physiology and Biochemistry 162, 647655.CrossRefGoogle ScholarPubMed
Bernardo, S., Dinis, L.-T., Machado, N., Barros, A., Pitarch-Bielsa, M., Gómez-Cadenas, A. and Moutinho-Pereira, J. (2021c). Kaolin impacts on hormonal balance, polyphenolic composition and oenological parameters in red grapevine berries during ripening. Journal of Berry Research 11, 465479.CrossRefGoogle Scholar
Bernardo, S., Luzio, A., Machado, N., Ferreira, H., Vives-Peris, V., Malheiro, A.C., Correia, C., Gómez-Cadenas, A., Moutinho-Pereira, J. and Dinis, L.-T. (2021b). Kaolin application modulates grapevine photochemistry and defence responses in distinct Mediterranean-type climate vineyards. Agronomy 11, 477.CrossRefGoogle Scholar
Brito, C., Dinis, L.-T., Moutinho-Pereira, J. and Correia, C. (2019). Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Scientia Horticulturae 250, 310316.CrossRefGoogle Scholar
Brito, G., Costa, A., Fonseca, H.M.A.C. and Santos, C.V. (2003). Response of Olea europaea spp. maderensis in vitro shoots exposed to osmotic stress. Scientia Horticulturae 97, 411417.CrossRefGoogle Scholar
Camargo, Â.P.D. and Camargo, M.B.P.D. (2001). Definition and outline for the phenological phases of Arabic coffee under Brazilian tropical conditions. Bragantia 60, 6568.CrossRefGoogle Scholar
Cassamo, C.T., Draper, D., Romeiras, M.M., Marques, I., Chiulele, R., Rodrigues, M., Stalmans, M., Partelli, F.L., Ribeiro-Barros, A. and Ramalho, J.C. (2023). Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, Ecosystems & Environment 346, 108341.CrossRefGoogle Scholar
CONAB (2022a). Acompanhamento da safra brasileira de café: terceiro levantamento, setembro/2022. Available at https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe (accessed 5 Jun 2022).Google Scholar
CONAB (2022b). Acompanhamento da safra brasileira de café: quarto levantamento, dezembro/2022. Available at https://www.conab.gov.br/component/k2/item/download/45502_94f81af36eb923bc7561183a3f1e1761 (accessed 10 January 2023).Google Scholar
Costa, J.D.O., Coelho, R.D., Barros, T.H.D.S., Fraga Junior, E.F. and Fernandes, A.L.T. (2020). Canopy thermal response to water deficit of coffee plants under drip irrigation. Irrigation and Drainage 69, 472482.CrossRefGoogle Scholar
DaMatta, F.M. (2004). Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86, 99114.CrossRefGoogle Scholar
DaMatta, F.M., Loos, R.A., Silva, E.A. and Loureiro, M.E. (2002). Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. Journal of Plant Physiology 159, 975981.CrossRefGoogle Scholar
DaMatta, F.M., Rahn, E., Läderach, P., Ghini, R. and Ramalho, J.C. (2019). Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change 152, 167178.CrossRefGoogle Scholar
DaMatta, F.M. and Ramalho, J.C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18, 5581.CrossRefGoogle Scholar
Davis, A.P. (2011). Psilanthus mannii, the type species of Psilanthus, transferred to Coffea . Nordic Journal of Botany 29, 471472.CrossRefGoogle Scholar
Davis, A.P., Chadburn, H., Moat, J., O’Sullivan, R., Hargreaves, S. and Lughadha, E.N. (2019). High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5, eaav3473.CrossRefGoogle ScholarPubMed
Davis, A.P. and Rakotonasolo, F. (2021). Six new species of coffee (Coffea) from northern Madagascar. Kew Bulletin 76, 497511.CrossRefGoogle Scholar
Dinis, L.T., Ferreira, H., Pinto, G., Bernardo, S., Correia, C.M. and Moutinho-Pereira, J. (2016). Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. Photosynthetica 54, 4755.CrossRefGoogle Scholar
EMBRAPA (2013). Sistema brasileiro de classificação de solos. Rio de Janeiro, Brazil: Centro Nacional de Pesquisa de Solos. Available at http://livimagens.sct.embrapa.br/amostras/00053080.pdf.Google Scholar
Ferrão, R.G., de Muner, L.H., Fonseca, A.F.A. da and Ferrão, M. (2019). Conilon Coffee. Available at http://biblioteca.incaper.es.gov.br/digital/handle/123456789/3509.Google Scholar
Fitch, A., Rowe, R.L., McNamara, N.P., Prayogo, C., Ishaq, R.M., Prasetyo, R.D., Mitchell, Z., Oakley, S. and Jones, L. (2022). The coffee compromise: is agricultural expansion into tree plantations a sustainable option? Sustainability 14, 3019.CrossRefGoogle Scholar
Glenn, D.M., Cooley, N., Walker, R., Clingeleffer, P. and Shellie, K. (2010). Impact of kaolin particle film and water deficit on wine grape water use efficiency and plant water relations. HortScience 45, 11781187.CrossRefGoogle Scholar
Glenn, D.M., Puterka, G.J., Vanderzwet, T., Byers, R.E. and Feldhake, C. (1999). Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. Journal of Economic Entomology 92, 759771.CrossRefGoogle Scholar
Gomes, L.C., Bianchi, F.J.J.A., Cardoso, I.M., Fernandes, R.B.A., Fernandes Filho, E.I. and Schulte, R.P.O. (2020). Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agriculture, Ecosystems & Environment 294, 106858.CrossRefGoogle Scholar
Hao, X., Zhou, S., Han, L. and Zhai, Y. (2021). Differences in PItotal of Quercus liaotungensis seedlings between provenances. Scientific Reports 11, 23439.CrossRefGoogle Scholar
Havaux, M. and Tardy, F. (1999). Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high-light and heat stress. Journal of Plant Physiology 26, 569.Google Scholar
ICO (International Coffee Organization) (2022). Trade statistics. Available at https://www.ico.org/prices/new-consumption-table.pdf (accessed 24 November 2022).Google Scholar
Idso, S.B., Jackson, R.D., Pinter, P.J. Jr, Reginato, R.J. and Hatfield, J.L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Journal of Agricultural Meteorology 24, 4555.CrossRefGoogle Scholar
Jones, H.G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology 95, 139149.CrossRefGoogle Scholar
Jones, H.G. (2018). Thermal imaging and infrared sensing in plant ecophysiology. In Sánchez-Moreiras, A. and Reigosa, M. (eds), Advances in Plant Ecophysiology Techniques. Switzerland: Springer International Publishing, pp. 135151.CrossRefGoogle Scholar
Kitzberger, C.S.G., Pot, D., Marraccini, P., Pereira, L.F.P. and Scholz, M.B.S. (2020). Flavor precursors and sensory attributes of coffee submitted to different post-harvest processing. Journal of the Science of Food and Agriculture 5, 700714.Google Scholar
Kumari, A., Lakshmi, G.A., Krishna, G.K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S.K. and Verma, K.K. (2022). Climate change and its impact on crops: a comprehensive investigation for sustainable agriculture. Journal of Agronomy 12, 3008.CrossRefGoogle Scholar
Leinonen, I., Grant, O.M., Tagliavia, C.P.P., Chaves, M.M. and Jones, H.G. (2006). Estimating stomatal conductance with thermal imagery. Plant Cell & Environment 29, 15081518.CrossRefGoogle ScholarPubMed
Luzio, A., Bernardo, S., Correia, C., Moutinho-Pereira, J. and Dinis, L.-T. (2021). Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Scientia Horticulturae 281, 109962.CrossRefGoogle Scholar
Marcolan, A.L., Ramalho, A.R., Mendes, A.M., Teixeira, C.A.D., Fernandes, C.D.F., Costa, J.N.M., Vieira Junior, J.R., Oliveira, S.J.M., Fernandes, S.R. and Veneziano, W. (2009). Cultivo dos cafeeiros conilon e robusta para Rondônia. Sistemas de Produção 33, 61 p. Availabel at http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/710755.Google Scholar
Martinez, H.E., de Souza, B.P., Caixeta, E.T., de Carvalho, F.P. and Clemente, J.M. (2020). Water deficit changes nitrate uptake and expression of some nitrogen related genes in coffee-plants (Coffea arabica L.). Scientia Horticulturae 267, 109254.CrossRefGoogle Scholar
Martins, M.Q., Partelli, F.L., Golynski, A., Pimentel, N.S. de, Ferreira, A., Bernardes, C.O. de, Ribeiro-Barros, A.I. and Ramalho, J.C. (2019). Adaptability and stability of Coffea canephora genotypes cultivated at high altitude and subjected to low temperature during the winter. Scientia Horticulturae 252, 238242.CrossRefGoogle Scholar
Martins, S.C., Galmes, J., Cavatte, P.C., Pereira, L.F., Ventrella, M.C. and DaMatta, F.M. (2014). Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS One 9, e95571.CrossRefGoogle Scholar
Mazzaglia, A., Fortunati, E., Kenny, J.M., Torre, L. and Balestra, G.M. (2017). Nanomaterials in plant protection. In Axelos M.A.V. and Van de Voorde M. (eds) Nanotechnology in Agriculture and Food Science. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Moat, J., Williams, J., Baena, S., Wilkinson, T., Gole, T.W., Challa, Z.K., Demissew, S. and Davis, A.P. (2017). Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants 3, 7081.CrossRefGoogle ScholarPubMed
Morais, L.E., Cavatte, P.C., Medina, E.F., Silva, P.E.M., Martins, S.C.V., Volpi, P.S., Junior, S.A., Machado Filho, J.A., Ronchi, C.P. and DaMatta, F.M. (2012). The effects of pruning at different times on the growth, photosynthesis and yield of conilon coffee (Coffea canephora) clones with varying patterns of fruit maturation in southeastern Brazil. Experimental Agriculture 48, 210221.CrossRefGoogle Scholar
Netto, A.T., Campostrini, E., de Oliveira, J.G. and Bressan-Smith, R.E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104, 199209.CrossRefGoogle Scholar
Nóia Júnior, R.S., Fraisse, C.W., Cerbaro, V.A., Karrei, M.A.Z. and Guindin, N. (2019). Evaluation of the Hargreaves-Samani method for estimating reference evapotranspiration with ground and gridded weather data sources. Applied Engineering in Agriculture 35, 823835.CrossRefGoogle Scholar
Nowak, M.D., Davis, A.P., Anthony, F. and Yoder, A.D. (2011). Expression and trans-specific polymorphism of self-incompatibility RNAses in Coffea (Rubiaceae). Plos One 6, e21019.CrossRefGoogle ScholarPubMed
Nunes, M.A., Ramalho, J.C. and Dias, M.A. (1993). Effect of nitrogen supply on the photosynthetic performance of leaves from coffee plants exposed to bright light. Journal of Experimental Botany 44, 893899.CrossRefGoogle Scholar
Núñez Rodríguez, J., Carvajal Rodríguez, J.C. and Mendoza Ferreira, O. (2021). Size and weight of coffee beans regarding altitudinal ranges in coffee-growing areas in Toledo, Norte de Santander (Colombia). Ciencia y Tecnologia 22, e1820.Google Scholar
Oliosi, G., Giles, J.A.D., Rodrigues, W.P., Ramalho, J.C. and Partelli, F.L. (2016). Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Australian Journal of Crop Science 10, 528538.CrossRefGoogle Scholar
OMRI (2022). Available at https://www.omri.org/mfg/tki/certificate/9178. (accessed 3 November 2022).Google Scholar
Oukarroum, A., Schansker, G. and Strasser, R.J. (2009). Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum 137, 188199.CrossRefGoogle ScholarPubMed
Pádua, L., Bernardo, S., Dinis, L.-T., Correia, C., Moutinho-Pereira, J. and Sousa, J.J. (2022). The efficiency of foliar kaolin spray assessed through UAV-based thermal infrared imagery. Remote Sensing 14, 4019.CrossRefGoogle Scholar
Partelli, F.L., Covre, A.M., Oliosi, G. and Covre, D.T. (2021a). Monte Pascoal: first clonal Conilon coffee cultivar for Southern Bahia-Brazil. Functional Plant Breeding Journal 3. http://www.fpbjournal.com/fpbj/index.php/fpbj/article/view/126 Google Scholar
Partelli, F.L., Giles, J.A.D., Oliosi, G., Covre, A.M., Ferreira, A. and Rodrigues, V.M. (2020). Tributun: a coffee cultivar developed in partnership with farmers. CBAB 20, e30002025.CrossRefGoogle Scholar
Partelli, F.L., Golynski, A., Ferreira, A., Martins, M.Q., Mauri, A.L., Ramalho, J.C. and Vieira, H.D. (2019). Andina-first clonal cultivar of high-altitude conilon coffee. CBAB 19, 476480.CrossRefGoogle Scholar
Partelli, F.L., Oliosi, G., Dalazen, J.R., Silva, C.A. da, Vieira, H.D. and Espindula, M.C. (2021b). Proportion of ripe fruit weight and volume to green coffee: differences in 43 genotypes of Coffea canephora . Journal of Agronomy 113, 10501057.CrossRefGoogle Scholar
Pezzopane, J.R.M., Pedro Júnior, M.J., Thomaziello, R.A. and Camargo, M.B.P.D. (2003). Scale for evaluation of phenological stages of arabica coffee. Bragantia 62, 499505.CrossRefGoogle Scholar
Poltronieri, P. and Rossi, F. (2016). Challenges in specialty coffee processing and quality assurance. Challenges 7, 19.CrossRefGoogle Scholar
Prezotti, L.C., Oliveira, J.A., Gomes, J.A. and Dadalto, G.G. (2013). Manual de recomendação de calagem e adubação para o Estado do Espírito Santo: 5ª aproximação. Available at http://biblioteca.incaper.es.gov.br/digital/handle/123456789/3242.Google Scholar
Putra, B.T.W. and Soni, P. (2018). Dataset of chlorophyll content estimation of Coffea canephora using red and near-infrared consumer-grade camera. Data Brief 21, 736741.CrossRefGoogle Scholar
Racskó, J., Szabó, T., Nyéki, J., Soltész, M. and Nagy, P.T. (2010). Characterization of sunburn damage to apple fruits and leaves. International Journal of Horticultural Science 16, 1520.Google Scholar
Rakocevic, M., Batista, E.R., Pazianotto, R.A., Scholz, M.B.S. dos, Souza, G.A., Campostrini, E. and Ramalho, J.C. (2021a). Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO2 . Functional Plant Biology 48, 469482.CrossRefGoogle Scholar
Rakocevic, M. and Matsunaga, F.T. (2018). Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration. Annals of Botany 122, 117131.CrossRefGoogle ScholarPubMed
Rakocevic, M., Matsunaga, F.T., Baroni, D.F., Campostrini, E. and Costes, E. (2021b). Multiscale analyses of growth and berry distributions along four branching orders and vertical profile of Coffea arabica L. cultivated under high density planting systems. Scientia Horticulturae 281, 109934.CrossRefGoogle Scholar
Rakocevic, M., Scholz, M.B.S. dos, Pazianotto, R.A.A., Matsunaga, F.M. and Ramalho, J.C. (2023). Variation in yield, berry distribution and chemical attributes of Coffea arabica beans among the canopy strata of four genotypes cultivated under contrasted water regimes. Horticulturae 9, 215.CrossRefGoogle Scholar
Ramalho, J.C, Pons, T.L., Groeneveld, H.W., Azinheira, H.G. and Nunes, M.A. (2000). Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: role of xanthophylls, quenching mechanisms and nitrogen nutrition. Functional Plant Biology 27, 4351.CrossRefGoogle Scholar
R Core Team (2022). Available at https://wwwr-projectorg/ (accessed 02 October 2022).Google Scholar
Rodrigues, W.P., Machado Filho, J.A., Silva, J.R. da, Figueiredo, F.A.M.M.A. de, Ferraz, T.A., Ferreira, L.S., Bezerra, L.B.S. da, Abreu, D.P. de, Bernado, W.P. de, Passos, L.C., Sousa, E.F., de, Glenn, D.M., Ramalho, J.C. and Campostrini, E. (2016). Whole-canopy gas exchanges in Coffea sp. is affected by supra-optimal temperature and light distribution within the canopy: the insights from an improved multi-chamber system. Scientia Horticulturae 211, 194202.CrossRefGoogle Scholar
Rodrigues, W.P., Silva, J.R., Ferreira, L.S., Filho, J.A.M., Figueiredo, F.A.M.M.A., Ferraz, T.M., Bernado, W.P., Bezerra, L.B.S., Abreu, D.P., Cespom, L., Ramalho, J.C. and Campostrini, E. (2018). Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop Pasture Science 69, 317325.CrossRefGoogle Scholar
Ronchi, C.P. and DaMatta, F.M. (2007). Aspectos fisiológicos do café conilon. In Ferrão, R.G., Fonseca, A.F.A., Bragança, S.M., Ferrão, M.A.G. and De Muner, L.H. (eds), Café Conilon. Vitória, Brazil: Incaper, pp. 95119.Google Scholar
Santos, L.A., Lorenzetti, E.R., Souza, P.E., de Paula, P.V.A.A. and Luz, A.L.F. (2016). Scalding in the coffee: exposure face and photosynthetic damage. Ciencia y Tecnología Agropecuaria 10, 1317.Google Scholar
Seki, M.S., Tetto, A.F., Tres, A. and Vieira, R.S. (2021). Climate classification of the state of Espírito Santo, Brazil, according to Holdridge´s life zones. Revista em Agronegócio e Meio Ambiente 14, e8007.Google Scholar
Shellie, K.C. and King, B.A. (2013). Kaolin particle film and water deficit influence red winegrape color under high solar radiation in an arid climate. AJEV 64, 214222.Google Scholar
Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125, 2758.CrossRefGoogle ScholarPubMed
Steiman, S.R., Bittenbender, H.C. and Idol, T.W. (2007). Analysis of kaolin particle film use and its application on coffee. HortScience 42, 16051608.CrossRefGoogle Scholar
Strasser, B.J. (1997). Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research 52, 147155.CrossRefGoogle Scholar
Strasser, R.J., Srivastava, A. and Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Yunus, M., Pathre, U. and Mohanty, P. (eds), Probing photosynthesis: Mechanisms, Regulation and Adaptation. London: Taylor and Francis, pp. 445483.Google Scholar
Strasser, R.J., Tsimilli-Michael, M. and Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In Papageorgiou, G.C. (ed), Chlorophyll a Fluorescence. Dordrecht: Springer, pp. 321362.CrossRefGoogle Scholar
Unigarro, C.A.M., Quinchua, L.C.I., Hernandez, M.C. and Zornosa, J.R.A. (2023). Response to applying kaolinite particles in coffee variety Cenicafé 1 seedlings during the nursery stage. Journal of the Saudi Society of Agricultural Sciences 22, 298308.CrossRefGoogle Scholar
Valentini, G., Pastore, C., Allegro, G., Muzzi, E., Seghetti, L. and Filippetti, I. (2021). Application of kaolin and Italian natural chabasite-rich zeolitite to mitigate the effect of global warming in Vitis vinifera L. cv. sangiovese. Agronomy 11, 1035.CrossRefGoogle Scholar
Vázquez, N., López-Fernández, H., Vieira, C.P., Fdez-Riverola, F., Vieira, J. and Reboiro-Jato, M. (2019). BDBM 1.0: a desktop application for efficient retrieval and processing of high-quality sequence data and application to the identification of the putative coffea s-locus. Interdisciplinary Sciences: Computational Life Sciences 11, 5767.Google Scholar
Venancio, L.P., Filgueiras, R., Mantovani, E.C., Amaral, C.H., Cunha, F.F., Silva, F.C.S., Althoff, D., Santos, R.A. and Cavatte, P.C. (2020). Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State, Brazil. Scientific Reports 10, 19719.CrossRefGoogle Scholar
Wahid, A., Gelani, S., Ashraf, M. and Foolad, M. (2007). Heat tolerance in plants: an overview. EEB 61, 199223.Google Scholar
Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., Iwaib, K. and Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Production Science 25, 337349.CrossRefGoogle Scholar
Supplementary material: File

de Abreu et al. supplementary material

Table S1

Download de Abreu et al. supplementary material(File)
File 17.6 KB