Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:43:41.477Z Has data issue: false hasContentIssue false

EFFECTS OF SALINE WATER ON WATER STATUS, YIELD AND FRUIT QUALITY OF WILD (SOLANUM CHILENSE) AND DOMESTICATED (SOLANUM LYCOPERSICUM VAR. CERASIFORME) TOMATOES

Published online by Cambridge University Press:  03 September 2012

JUAN-PABLO MARTÍNEZ*
Affiliation:
Instituto de Investigaciones Agropecuarias (INIA-La Cruz), Chorrillos N° 86, La Cruz, Quillota, Chile Regional Centre for Studies of Food for Health (CREAS), Blanco 1623, Of 1402. Edificio Torres Mar del Sur II, Valparaíso, Chile
ALEJANDRO ANTÚNEZ
Affiliation:
Instituto de Investigaciones Agropecuarias (INIA-La Platina), Santa Rosa 11610, La Pintana, Casilla 3, Santiago, Chile
RICARDO PERTUZÉ
Affiliation:
Universidad de Chile, Facultad de Ciencias Agronómicas, Santa Rosa 11315, Santiago, Chile
MARIA DEL PILAR ACOSTA
Affiliation:
Instituto de Investigaciones Agropecuarias (INIA-La Cruz), Chorrillos N° 86, La Cruz, Quillota, Chile
XIMENA PALMA
Affiliation:
Facultad de Química y Farmacia, Universidad de Valparaíso, Avda. Gran Bretaña 1093, Valparaíso, Chile
LIDA FUENTES
Affiliation:
Instituto de Investigaciones Agropecuarias (INIA-La Cruz), Chorrillos N° 86, La Cruz, Quillota, Chile Regional Centre for Studies of Food for Health (CREAS), Blanco 1623, Of 1402. Edificio Torres Mar del Sur II, Valparaíso, Chile
ANIBAL AYALA
Affiliation:
Instituto de Investigaciones Agropecuarias (INIA-La Cruz), Chorrillos N° 86, La Cruz, Quillota, Chile
HECTOR ARAYA
Affiliation:
Regional Centre for Studies of Food for Health (CREAS), Blanco 1623, Of 1402. Edificio Torres Mar del Sur II, Valparaíso, Chile Facultad de Química y Farmacia, Universidad de Valparaíso, Avda. Gran Bretaña 1093, Valparaíso, Chile Universidad de Chile, Facultad de Medicina, Departamento de Nutrición. Independencia 1027, Santiago, Chile
STANLEY LUTTS
Affiliation:
Groupe de Recherche en Physiologie Végétale – Earth and Life Institute – Agronomy (ELI-A) Université Catholique de Louvain 5 (Bte L7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
*
§Corresponding author. Email: jpmartinez@inia.cl

Summary

Farmers around the world are concerned about the effects of human-induced salinity on crop yield and quality. Therefore, researchers are actively testing wild relatives of cultivated plants to identify candidates to improve crop performance under salt stress. A study was conducted to understand the effects of salt stress (Sodium chloride, NaCl) on cultivated tomato species (Solanum lycopersicum var. cerasiforme L.) and a wild tomato relative (Solanum chilense Dun.) from the Northern part of Chile. Plants were cultivated hydroponically under controlled environmental conditions for 112 days with nutrient solution containing 0 mM (3 dS m−1), 40 mM (6 dS m−1) and 80-mM (9 dS m−1) NaCl. Salt stress reduced the shoot biomass in S. lycopersicum but not in S. chilense. Both species were able to maintain the leaf water content; however, the cultivated S. lycopersicum showed osmotic adjustment, while S. chilense did not. Salt stress reduced the total fruit yield in S. lycopersicum based on a decrease in the mean fruit weight, but it had no impact on the number of fruits per plant. In contrast, salt stress had no significant impact on the fruit yield in S. chilense. Salt stress increased the total soluble solids content in S. lycopersicum and the titratable acidity in S. chilense. It was concluded that S. chilense displays a contrasting behaviour in response to prolonged exposure to moderate salinity compared with S. lycopersicum, and that this related species could be an interesting plant for breeding purposes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almasoum, A. A. (2000). Effect of planting depth on growth and productivity of tomatoes using drip irrigation with semi saline water. Acta Horticulturae 537:773778.CrossRefGoogle Scholar
Bai, Y. and Lindhout, P. (2007). Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of Botany 100:10851094.CrossRefGoogle ScholarPubMed
Cayuela, E., Estañ, M. T., Parra, M., Caro, M. and Bolarin, M. C. (2001). NaCl pre-treatment at the seedling stage enhances fruit yield of tomato plants irrigated with salt water. Plant and Soil 230:231238.CrossRefGoogle Scholar
Chetelat, R. T., Pertuze, R. A., Faundez, L., Graham, E. B. and Jones, C. M. (2009). Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of Northern Chile. Euphytica 167:7793.CrossRefGoogle Scholar
Cuartero, J., Bolarín, M. C., Asíns, M. J. and Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany 57:10451058.CrossRefGoogle ScholarPubMed
Cuartero, J. and Fernández-Muñoz, R. (1999). Tomato and salinity. Scientiae Horticulturae 78:83125.CrossRefGoogle Scholar
de Pascale, S., Maggio, A., Fogliano, V., Ambrosino, P. and Ritieni, A. (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. Journal of Horticultural Science and Biotechnology 76:447453.CrossRefGoogle Scholar
Dorai, M., Papadopoulosa, A. P. and Gosselin, A. (2001). Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21:367383.CrossRefGoogle Scholar
Estañ, M. T., Martinez-Rodriguez, M. M., Pérez-Alfocea, F., Flowers, T. J. and Bolarin, M. C. (2005). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany 56:703712.CrossRefGoogle Scholar
Flores, P., Navarro, J. M., Carvajal, M., Cerdá, A. and Martínez, V. (2003). Tomato yield and quality as affected by nitrogen source and salinity. Agronomie 23:249256.CrossRefGoogle Scholar
Flowers, T. J. and Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management 78:1524.CrossRefGoogle Scholar
Ghanem, M. E., Van Elteren, J., Albacete, A., Quinet, M., Martínez-Andújar, C., Kinet, J.-M., Pérez-Alfocea, F. and Lutts, S. (2009). Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Functional Plant Biology 36:125136.CrossRefGoogle ScholarPubMed
Greenway, H. and Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review in Plant Physiology 31:149190.CrossRefGoogle Scholar
Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review in Plant Physiology and Plant Molecular Biology 51:463499.CrossRefGoogle ScholarPubMed
He, Y., Zhu, Z., Yang, J., Ni, X. and Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany 66:270278.CrossRefGoogle Scholar
Krauss, S., Schnitzler, W. H., Grassmann, J. and Woitke, M. (2006). The influence of different electrical conductivity values in a simplified recirculating soil less system on inner and outer fruit quality characteristics of tomato. Journal of Agriculture and Food Chemistry 54:441448.CrossRefGoogle Scholar
Lutts, S., Bouharmont, J. and Kinet, J. M. (1999). Physiological characterization of salt-resistant rice somaclones. Australian Journal of Botany 47:835849.CrossRefGoogle Scholar
Maatallah, S., Ghanem, M. E., Albouchi, A., Bizid, E. and Lutts, S. (2010). A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. Journal of Arid Envvironment 74:327337.CrossRefGoogle Scholar
Maggio, A., De Pascale, S., Angelino, G., Ruggiero, C. and Barbieri, G. (2004). Physiological response of tomato to saline irrigation in long-term salinized soils. European Journal of Agronomy 21:149159.CrossRefGoogle Scholar
Marín-Rodríguez, M. C., Orchard, J. and Seymour, G. B. (2002). Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany 53:21152119.CrossRefGoogle ScholarPubMed
Martínez, J. P., Araya, H., Antunez, A., Pertuzé, R., Fuentes, L., Cuhian, V., Palma, X., Ayala, A. and Lutts, S. (Submitted). Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum L. and its wild-relative Solanum chilense Dun. Scientia Horticulturae.Google Scholar
Martínez, J. P., Ledent, J. F., Bajji, M., Kinet, J. M. and Lutts, S. (2003). Effect of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regulation 41:6373.CrossRefGoogle Scholar
Martínez, J. P., Lutts, S., Schanck, A., Bajji, M. and Kinet, J. M. (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? Journal of Plant Physiology 161:10411051.CrossRefGoogle ScholarPubMed
Munns, R., James, R. A. and Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57:10251043.CrossRefGoogle ScholarPubMed
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651681.CrossRefGoogle ScholarPubMed
Parida, A. K. and Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324349.CrossRefGoogle ScholarPubMed
Petersen, K., Willumsen, J. and Kaak, K. (1998). Composition and taste of tomatoes as affected by increased salinity and different salinity sources. Journal of Horticultural Science and Biotechnology 73:205215.CrossRefGoogle Scholar
Qadir, M., Oster, J. D., Schubert, S., Noble, A. S. and Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy 96:197247.CrossRefGoogle Scholar
Rick, C. M. (1991). Tomato genetic resources of South America reveal many genetic treasures. Diversity 7:5456.Google Scholar
Sakamoto, A. and Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell and Environment 25:163171.CrossRefGoogle ScholarPubMed
Scholander, P. F., Hammel, H. T., Bradstreet, E. D. and Hemminbsen, E. A. (1965). Sap pressure in vascular plants. Science 148:339346.CrossRefGoogle ScholarPubMed
Spooner, D. M., Peralta, I. E. and Knapp, S. (2005). Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:4361.CrossRefGoogle Scholar
Tapia, G., Verdugo, I., Yañez, M., Ahumada, I., Theoduloz, C., Cordero, C., Poblete, F., González, E. and Ruiz-Lara, S. (2005). Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicum chilense Dun. Plant Physiology 138:20752086.CrossRefGoogle Scholar
Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science 10:615620.CrossRefGoogle ScholarPubMed
Yeo, A. (1998). Predicting the interaction between the effects of salinity and climate change on crop plants. Scientiae Horticulturae 78:159174.CrossRefGoogle Scholar
Zhou, S., Sauvé, R. J., Liu, Z., Reddy, S., Bhatti, S., Hucko, S. D., Fish, T. and Thannhauser, T. W. (2011). Identification of salt-induced changes in leaf and root proteomes of the wild tomato, Solanum chilense. Journal of the American Society of Horticultural Science 136:288302.CrossRefGoogle Scholar