Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:04:58.193Z Has data issue: false hasContentIssue false

Effects of contrasted cropping systems on yield and N balance of upland rainfed rice in Madagascar: Inputs from the DSSAT model

Published online by Cambridge University Press:  02 March 2020

Julie Dusserre*
Affiliation:
CIRAD, UPR AIDA, F-34398Montpellier, France AIDA, University of Montpellier, Montpellier, France
Patrice Autfray
Affiliation:
AIDA, University of Montpellier, Montpellier, France CIRAD, UPR AIDA, 110Antsirabe, Madagascar
Miora Rakotoarivelo
Affiliation:
Institut d’Enseignement Supérieur d’Antsirabe - Vakinakaratra, Madagascar
Tatiana Rakotoson
Affiliation:
Université d’Antananarivo, Ecole Supérieure des Sciences Agronomiques, BP 175, Antananarivo, Madagascar
Louis-Marie Raboin
Affiliation:
CIRAD, UPR AIDA, F-34398Montpellier, France AIDA, University of Montpellier, Montpellier, France
*
*Corresponding author: Email: julie.dusserre@cirad.fr

Abstract

In response to the extensive development of upland rice on the hillsides of the Malagasy highlands, alternative cropping systems have been designed based on conservation agriculture (CA). As the promotion of CA in smallholder farming systems is still the subject of debate, its potential benefits for smallholder farmers require further assessment. In the context of resource-poor farmers and low-input production systems, nitrogen (N) is a major limiting nutrient. The effects of contrasted cropping systems have been studied on upland rice yield and N uptake in rainfed conditions: conventional tillage (CT) and CA with a mulch of maize or a legume (Stylosanthes or velvet bean). Decision Support Systems for Agrotechnology Transfer (DSSAT) crop growth model was used to quantify the soil N balance according to the season and the cropping system. The lowest yields were obtained in CA with a mulch of maize and were also associated with the lowest crop N uptake. Upland rice yields were higher or equivalent under CA with a legume mulch than under CT cropping systems. The supply of N was considerably higher in CA with a legume mulch than in CT, but due to higher leaching and immobilization in CA, the final contribution of N from the mulch to the crop was reduced although not negligible. DSSAT has been shown to be sufficiently robust and flexible to simulate the soil N balance in contrasting cropping systems. The challenge is now to evaluate the model in less contrasted experimental conditions in order to validate its use for N uptake and yield prediction in support to the optimization and design of new cropping systems.

Type
Research Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldé, A.B., Scopel, E., Affholder, F., Corbeels, M., Da Silva, F.A.M., Xavier, J.H.V. and Wery, J. (2011). Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research 124, 240251. doi: 10.1016/j.fcr.2011.06.017.CrossRefGoogle Scholar
Becker, M. and Johnson, D.E. (1999). The role of legume fallows in intensified upland rice-based systems of West Africa. Nutrient Cycling in Agroecosystems 53,7181.CrossRefGoogle Scholar
Caviglia, O.P., Sadras, V.O. and Andrade, F.H. (2013). Modelling long-term effects of cropping intensification reveals increased water and radiation productivity in the South-eastern Pampas. Field Crops Research 149, 300311. doi: 10.1016/j.fcr.2013.05.003.CrossRefGoogle Scholar
Corbeels, M., Chirat, G., Messad, S. and Thierfelder, C. (2016). Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. European Journal of Agronomy 76, 4153. doi: 10.1016/j.eja.2016.02.001.CrossRefGoogle Scholar
Corbeels, M., de Graaff, J., Ndah, T.H., Penot, E., Baudron, F., Naudin, K., Andrieu, N., Chirat, G., Schuler, J., Nyagumbo, I., Rusinamhodzi, L., Traore, K., Mzoba, H.D. and Adolwa, I.S. (2014). Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agriculture, Ecosystems & Environment 187, 155170. doi: 10.1016/j.agee.2013.10.011.CrossRefGoogle Scholar
Crews, T.E. and Peoples, M.B. (2005). Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutrient Cycling in Agroecosystems 72, 101120. doi: 10.1007/s10705-004-6480-1.CrossRefGoogle Scholar
Dawson, J.C., Huggins, D.R. and Jones, S.S. (2008). Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Research 107, 89101.CrossRefGoogle Scholar
Dusserre, J., Audebert, A., Radanielson, A. and Chopart, J.-L. (2009). Towards a simple generic model for upland rice root length density estimation from root intersections on soil profile. Plant and Soil 325, 277288. doi: 10.1007/s11104-009-9978-0.CrossRefGoogle Scholar
Dusserre, J., Chopart, J.-L., Douzet, J.-M., Rakotoarisoa, J. and Scopel, E. (2012). Upland rice production under conservation agriculture cropping systems in cold conditions of tropical highlands. Field Crops Research 138, 3341. doi: 10.1016/j.fcr.2012.09.011.CrossRefGoogle Scholar
Gerardeaux, E., Giner, M., Ramanantsoanirina, A. and Dusserre, J. (2012). Positive effects of climate change on rice in Madagascar. Agronomy for Sustainable Development 32, 619627. doi: 10.1007/s13593-011-0049-6.CrossRefGoogle Scholar
Gijsman, A.J., Hoogenboom, G., Parton, W.J. and Kerridge, P.C. (2002). Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agronomy Journal 94, 464474.CrossRefGoogle Scholar
Giller, K.E., Witter, E., Corbeels, M. and Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114, 2334. doi: 10.1016/j.fcr.2009.06.017CrossRefGoogle Scholar
Grinand, C., Rajaonarivo, A., Bernoux, M., Pajot, V., Brossard, M. and Razafimbelo, T. (2009). Estimation des stocks de carbone dans les sols de Madagascar. Etude et Gestion des Sols 16, 2334 (in French).Google Scholar
Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P. and Jones, J.W. (2019). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.Google Scholar
Huang, M., Zou, Y., Jiang, P., Xia, B., Feng, Y., Cheng, Z. and Mo, Y. (2012). Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crops Research 129, 2838. doi: 10.1016/j.fcr.2012.01.013.CrossRefGoogle Scholar
Husson, O., Séguy, L., Charpentier, H., Rakotondramanana Michellon, R., Raharison, T., Naudin, K., Enjalric, F., Moussa, N., Razanamparany, C., Rasolomanjaka, J., Bouzinac, S., Chabanne, A., Boulakia, S., Tivet, F., Chabierski, S., Razafintsalama, H., Rakotoarinivo, C., Andrianasolo, H.M., Chabaud, F.-X., Rakotondralambo, A. and Ramaroson, I. (2013). Manuel pratique du Semis direct sur Couverture Végétale permanente. Application à Madagascar. Antananarivo, Madagascar: GSDM/CIRAD, pp. 716, ISBN: 978–2–87614–689–1 (in French).Google Scholar
Jagtap, S.S. and Abamu, F.J. (2003). Matching improved maize production technologies to the resource base of farmers in a moist savanna. Agricultural Systems 76, 10671084. doi: 10.1016/S0308-521X(02)00040-9.CrossRefGoogle Scholar
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265. doi: 10.1016/S1161-0301(02)00107-7.CrossRefGoogle Scholar
Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M. and Zougmoré, R. (eds.) (2013). Soil Atlas of Africa. Luxembourg: European Commission, Publications Office of the European Union, 176 pp.Google Scholar
Mary, B., Recous, S., Darwis, D. and Robin, D. (1996). Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil 181, 7182.CrossRefGoogle Scholar
Minten, B., Randrianarisoa, J.C. and Barrett, C.B. (2007). Productivity in Malagasy rice systems: wealth-differentiated constraints and priorities. Agricultural Economics 37, 225235. doi: 10.1111/j.1574-0862.2007.00247.x.CrossRefGoogle Scholar
Ngwira, A.R., Aune, J.B. and Thierfelder, C. (2014). DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil & Tillage Research 143, 8594. doi: 10.1016/j.still.2014.05.003.CrossRefGoogle Scholar
Porter, C.H., Jones, J.W., Adiku, S., Gijsman, A.J., Gargiulo, O. and Naab, J.B. (2010). Modeling organic carbon and carbon-mediated soil processes in DSSAT v4.5. Operational Research 10, 247278. doi: 10.1007/s12351-009-0059-1.CrossRefGoogle Scholar
Raboin, L.-M., Randriambololona, T., Radanielina, T., Ramanantsoanirina, A., Ahmadi, N. and Dusserre, J. (2014). Upland rice varieties for smallholder farming in the cold conditions in Madagascar’s tropical highlands. Field Crops Research 169, 1120. doi: 10.1016/j.fcr.2014.09.006.CrossRefGoogle Scholar
Rakotoson, T., Dusserre, J., Letourmy, P., Ramonta, I.R., Cao, T.-V., Ramanantsoanirina, A., Roumet, P., Ahmadi, N. and Raboin, L.-M. (2017). Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Research 213, 194203. doi: 10.1016/j.fcr.2017.07.023.CrossRefGoogle Scholar
Recous, S., Robin, D., Darwis, D. and Mary, B. (1995). Soil inorganic N availability: effect on maize residue decomposition. Soil Biology Biochemistry 27, 15291538. doi: 10.1016/0038-0717(95)00096-W.CrossRefGoogle Scholar
Rusinamhodzi, L., Corbeels, M., Van Wijk, M.T., Rufino, M.C., Nyamangara, J. and Giller, K.E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development 31, 657673. doi: 10.1007/s13593-011-0040-2.CrossRefGoogle Scholar
Saito, K., Linquist, B., Keobualapha, B., Phanthaboon, K., Shiraiwa, T. and Horie, T. (2006). Stylosanthes guianensis as a short-term fallow crop for improving upland rice productivity in northern Laos. Field Crops Research 96, 438447.CrossRefGoogle Scholar
Scopel, E., Da Silva, F.A.M., Corbeels, M., Affholder, F. and Maraux, F. (2004). Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383395. doi: 10.1051/agro:2004029.CrossRefGoogle Scholar
Scopel, E., Findeling, A., Chavez Guerra, E. and Corbeels, M. (2005). Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agronomy for Sustainable Development 25, 425432. doi: 10.1051/agro:200541.CrossRefGoogle Scholar
Scopel, E., Triomphe, B., Affholder, F., Da Silva, F.A.M., Corbeels, M., Xavier, J.H.V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., De Carvalho Mendes, I. and De Tourdonnet, S. (2013). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development 33, 113130. doi: 10.1007/s13593-012-0106-9.CrossRefGoogle Scholar
von Uexküll, H.R. and Mutert, E. (1995). Global extent, development and economic-impact of acid soils. Plant and Soil 171, 115. doi: 10.1007/BF00009558.CrossRefGoogle Scholar
Zemek, O., Frossard, E., Scopel, E. and Oberson, A. (2018). The contribution of Stylosanthes guianensis to the nitrogen cycle in a low input legume-rice rotation under conservation agriculture. Plant and Soil 425, 553576. doi: 10.1007/s11104-018-3602-0.CrossRefGoogle Scholar
Supplementary material: File

Dusserre et al. supplementary material

Dusserre et al. supplementary material 1

Download Dusserre et al. supplementary material(File)
File 91.5 KB
Supplementary material: File

Dusserre et al. supplementary material

Dusserre et al. supplementary material 2

Download Dusserre et al. supplementary material(File)
File 91.5 KB