Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T17:42:54.207Z Has data issue: false hasContentIssue false

Effects of tianeptine on sleep-wakefulness cycles in the rhesus monkey

Published online by Cambridge University Press:  16 April 2020

E Balzamo
Affiliation:
Laboratoire de Biologie des Hautes-Pressions, URA 1630-CNRS, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13326Marseille Cedex 15
D Lagarde
Affiliation:
CERMA, Division de Neurophysiologie Appliquée, 91228Bretigny-sur-Orge
C Milhaud
Affiliation:
CERMA, Division de Neurophysiologie Appliquée, 91228Bretigny-sur-Orge
E Mocaer
Affiliation:
IRIS, 6, place des Pleiades, 92415Courbevoie Cedex, France
JC Poignant
Affiliation:
IRIS, 6, place des Pleiades, 92415Courbevoie Cedex, France
Get access

Summary

Repeated administrations of tianeptine (10 mg·kg-1 im, twice daily, for 15 days) did not globally influence sleep-wakefulness cycles and cortical EEG activity overnight in rhesus monkeys. This antidepressant agent neither inhibited paradoxical sleep nor increased slow wave sleep. However, tianeptine induced a slight, but significant increase in wakefulness during the first hour following its administration, and had no sedative effects. The influence of tianeptine on sleep patterns in the monkey could be related to other arousal or sleep modifications observed in rats and cats, and to certain electrophysiological data reported in rat studies.

Type
Original article
Copyright
Copyright © Elsevier, Paris 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bert, JSaier, JToure, MF (1976) Comparaisons de l'effet de la clomipramine sur le sommeil du singe et de l'homme. Rev EEG Neurophysiol 6, 2325Google Scholar
Delagrange, PBouyer, JJMontaron, MFDurand, CMocaer, ERougeul, A (1988) Action of tianeptine on focalization of attention in cat. Abstracts of the XVIth CINP Congress, Munich (Germany), August 1988. Psychopharmacology 96 (suppl) 31.02.34, P275Google Scholar
Delagrange, PBouyer, JJDurand, CMocaer, ERougeul, A (1990) Action of tianeptine on focalization of attention in cat. Psychopharmacology 102, 227233CrossRefGoogle ScholarPubMed
Delalleau, BDulcire, CLe Moine, PKamoun, A (1988) Analysis of the side effects of tianeptine. Clin Neuropharmacol 11, suppl 2, S83S89Google ScholarPubMed
Kato, GWeitsch, AP (1988) Neurochemical profile of tianeptine, a new antidepressant drug. Clin Neuropharmacol 11, suppl 2, S43550Google ScholarPubMed
Kleinlogel, HBurki, HR (1987) Effects of the selective 5-hydroxytryptamine uptake inhibitors paroxetine and zimeldine on EEG sleep and waking stages in the rat. Neuropsychobiology 17, 206212CrossRefGoogle ScholarPubMed
Kupfer, DJSpiker, DGCoble, PMc Partland, RJ (1978) Amitriptyline and EEG sleep in depressed patients. I. Drug Effect. Sleep 1, 149159Google ScholarPubMed
Lejeune, FPoignant, JCReure, H (1987) EEG changes induced by tianeptine, a new antidepressant acting preferentially on serotoninergic system. Abstract poster Sessions of the Vlth International Catecholamine Symposium, Jerusalem, Israel 14-19 June 1987, 125Google Scholar
Lejeune, FPoignant, JCReure, H (1988) Étude electrophysiologique de la tianeptine, nouveau stimulant du recaptage de la sérotonine possédant une activité antidépressive. Neurophysiol Clin 18, 369381CrossRefGoogle Scholar
Lôo, HDeniker, P (1988) Position of tianeptine among antidepressive chemotherapies, Clin Neuropharmacol 11 suppl 2, S97S102Google Scholar
Manias, BTaylor, DA (1983) Inhibition of in vitro amine uptake into rat brain synaptosomes after in vivo administration of antidepressants. Eur J Pharmacol 95, 305309CrossRefGoogle ScholarPubMed
Maxwell, RAWhite, HL (1978) Tricyclic and monoamine oxidase inhibitors antidepressants: structure activity relationship.In: Handbook of Psychopharmacol (Iversen, LLIversen, SDSnyder, HS eds). Plenum Press New York, 14, 83155Google Scholar
Mendlewicz, HDunbar, GCHoffmann, GG (1985) Changes in sleep EEG architecture during the treatment of depressed patients with mianserin. Acta Psychiatr Scand 72, 2629CrossRefGoogle Scholar
Mennini, TMocaer, EGarattini, S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn- Schmiedeberg's Arch Pharmacol 336, 478482CrossRefGoogle ScholarPubMed
Renaud, BMocaer, EWeitsch, AFKato, GMennini, TGarattini, S (1988) Stimulation of serotonin uptake induced by a new antidepressant. Proceedings of the ECNP Meeting, Brussels (Belgium), May 1987. Pharmacopsychiatry 21, 66Google Scholar
Ruch-Monachon, MAJalfre, MHaefely, W (1976) Drugs and PGO waves in the lateral geniculate body of the curarized cat. PGO wave activity and brain 5-hydroxytryptamine. Arch Int Pharmacodyn Ther 219, 2, 269286Google ScholarPubMed
Saletu, B (1982) Pharmaco-EEG profiles of typical and atypical antidepressants.In: Typical and Atypical Antidepressants : Clinical Practice (Costa, Racagni, eds). Raven Press, New York, 257268Google Scholar
Saletu, BGrunberger, JRajna, P (1983) Pharmaco-EEG profiles of antidepressants. Pharmacodynamicstudics with fluvoxamine. Br J Clin Pharmacol 15, 369384CrossRefGoogle ScholarPubMed
Scuvée-Moreau, JDresse, A (1979) Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat. Eur J Pharmacol 57, 219225CrossRefGoogle ScholarPubMed
Scuvée-Moreau, JDresse, A (1987) Influence of tianeptine and clomipramine on the electrical activity of rat monoaminergic neurons and hippocampus pyramidal cells. Arch Int Physiol Biochim 95, 3, 49Google Scholar

A correction has been issued for this article:

Submit a response

Comments

No Comments have been published for this article.