Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T21:43:35.155Z Has data issue: false hasContentIssue false

11C-PIB PET in subjective cognitive impairment

Published online by Cambridge University Press:  16 April 2020

J. Rodda*
Affiliation:
Department of Mental Health Sciences, University College London, Windeyer Building, 46, Cleveland Street, LondonW1T 4JF, UK
A. Okello
Affiliation:
MRC Clinical Science Centre, Imperial College London, Cyclotron Building, Hammersmith Hospital, Du Cane Road, LondonW12 0NN, UK
P. Edison
Affiliation:
MRC Clinical Science Centre, Imperial College London, Cyclotron Building, Hammersmith Hospital, Du Cane Road, LondonW12 0NN, UK
T. Dannhauser
Affiliation:
Department of Mental Health Sciences, University College London, Windeyer Building, 46, Cleveland Street, LondonW1T 4JF, UK
D.J. Brooks
Affiliation:
MRC Clinical Science Centre, Imperial College London, Cyclotron Building, Hammersmith Hospital, Du Cane Road, LondonW12 0NN, UK
Z. Walker
Affiliation:
Department of Mental Health Sciences, University College London, Windeyer Building, 46, Cleveland Street, LondonW1T 4JF, UK
*
*Corresponding author. Tel.: +44 01279 827893; fax: +44 01 992 571089. E-mail address: j.rodda@ucl.ac.uk (J. Rodda).
Get access

Abstract

People with Subjective Cognitive Impairment (SCI) may be at increased risk of dementia. In this study we examined amyloid load in 5 SCI subjects and 14 controls using PIB PET scanning. One SCI subject had significantly increased PIB retention in the cortical areas of interest. Larger, longitudinal studies are indicated.

Type
Short communication
Copyright
Copyright © Elsevier Masson SAS 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bondi, M.W., Houston, W.S., Eyler, L.T., Brown, G.G.fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005; 64(3): 501508.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E.Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997; 18(4): 351357.CrossRefGoogle ScholarPubMed
Edison, P., Archer, H.A., Hinz, R., Hammers, A., Pavese, N., Tai, Y.F.et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007; 68(7): 501508.CrossRefGoogle Scholar
Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, L.et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003; 19(4): 224247.CrossRefGoogle ScholarPubMed
Jessen, F., Feyen, L., Freymann, K., Tepest, R., Maier, W., Heun, R.et al. Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiol Aging. 2006; 27(12): 17511756.CrossRefGoogle ScholarPubMed
Jessen, F., Wiese, B., Cvetanovska, G., Fuchs, A., Kaduszkiewicz, H., Kolsch, H.et al. Patterns of subjective memory impairment in the elderly: association with memory performance. Psychol Med. 2007; 37(12): 17531756.CrossRefGoogle ScholarPubMed
Klunk, W.E., Wang, Y., Huang, G.F., Debnath, M.L., Holt, D.P., Shao, L.et al. The binding of 2-(4’-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003; 23(6): 20862092.CrossRefGoogle Scholar
Lopresti, B.J., Klunk, W.E., Mathis, C.A., Hoge, J.A., Ziolko, S.K., Lu, X.et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005; 46(12): 19591972.Google ScholarPubMed
Mosconi, L., De, S.S., Brys, M., Tsui, W.H., Pirraglia, E., Glodzik-Sobanska, L.et al. Hypometabolism and Altered Cerebrospinal Fluid Markers in Normal Apolipoprotein E E4 Carriers with Subjective Memory Complaints. Biol Psychiatry 2007; 63(6):609618mo.CrossRefGoogle ScholarPubMed
Mosconi, L., Sorbi, S., de Leon, M.J., Li, Y., Nacmias, B., Myoung, P.S.et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med. 2006; 47(11): 17781786.Google ScholarPubMed
Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L., Dekosky, S.T.Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): 11331142.CrossRefGoogle ScholarPubMed
Reisberg, B., Prichep, L., Mosconi, L., John, E.R., Glodzik-Sobanska, L., Boksay, I.et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer's disease. Alzheimers Dement. 2008; 4(Suppl. 1): S98S108.CrossRefGoogle ScholarPubMed
Schmand, B., Jonker, C., Geerlings, M.I., Lindeboom, J.Subjective memory complaints in the elderly: depressive symptoms and future dementia. Br J Psychiatry 1997; 171: 373376.CrossRefGoogle ScholarPubMed
Tobiansky, R., Blizard, R., Livingston, G., Mann, A.The Gospel Oak Study stage IV: the clinical relevance of subjective memory impairment in older people. Psychol Med. 1995; 25(4): 779786.CrossRefGoogle ScholarPubMed
van der Flier, W.M., van Buchem, M.A., Weverling-Rijnsburger, A.W., Mutsaers, E.R., Bollen, E.L., Dmiraal-Behloul, F.et al. Memory complaints in patients with normal cognition are associated with smaller hippocampal volumes. J Neurol. 2004; 251(6): 671675.Google ScholarPubMed
Villemagne, V.L., Fodero-Tavoletti, M.T., Pike, K.E., Cappai, R., Masters, C.L., Rowe, C.C.The ART of loss: Abeta imaging in the evaluation of Alzheimer's disease and other dementias. Mol Neurobiol. 2008; 38(1): 115.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.