Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:38:16.754Z Has data issue: false hasContentIssue false

Who, Why, When, and Where From? The Peopling of the Canary Islands and the Challenges of Archaeometry

Published online by Cambridge University Press:  15 February 2024

Paloma Cuello del Pozo*
Affiliation:
Department of Anthropology, Texas A&M University, USA
*
*Author for correspondence: palomacuello@tamu.edu
Rights & Permissions [Opens in a new window]

Abstract

Archaeologists in the Canary Islands have gathered substantial quantitative data from radiocarbon measurements and aDNA analyses. While undeniably helpful and necessary for apprehending past human activity, their interpretation, based on theories underpinning models developed for island chains, has lagged, leaving a gap in our understanding of processes of occupation and social network systems. The decontextualized nature of the archaeological landscape of the Canaries and a lack of consensus about proper radiocarbon methodologies are some of the factors contributing to heated scholarly debate. Here, for the Canary Islands, the author reviews the current literature on aDNA and discusses settlement theories, the chronological evidence used for occupation models, and how such perspectives align with current thinking on island colonization.

Les archéologues des îles Canaries ont amassé une quantité considérable de dates radiocarbone et de donnés paléogénétiques. Leur analyse, quoiqu'indéniablement utile et nécessaire à notre compréhension d'activités anciennes, n'est cependant pas accompagnée de modèles d'interprétation plus poussés basés sur de théories élaborées pour les archipels. Cette situation crée une lacune dans notre conception des réseaux sociaux et du peuplement anciens des Canaries. Le caractère décontextualisé des paysages archéologiques des Canaries et le manque de consensus sur l'usage correct des méthodes de datation radiocarbone figurent parmi les facteurs menant à de vifs débats entre spécialistes. Pour les îles Canaries, l'auteur de cet article passe en revue la documentation actuelle sur l'ADN ancien, examine les théories concernant son peuplement et les données chronologiques utilisées dans l’élaboration de modèles d'occupation et considère si ces perspectives s'harmonisent avec les idées courantes concernant la colonisation des îles. Translation by Madeleine Hummler

Die Archäologen der Kanarischen Inseln haben eine Menge von Radiokarbon-Datierungen und paläogenetischen Daten zusammengesammelt. Obwohl die Analysen dieser Angaben zweifellos für unser Verständnis von menschlicher Tätigkeit in der Vergangenheit sinnvoll und nötig sind, gehen diese Untersuchungen nicht mit einer eingehenden Deutung, welche auf sich auf Theorien der Entwicklung von Inselketten stützt, einher. Dadurch entsteht eine Lücke in unserer Auffassung der Besiedlung und gesellschaftlichen Netzwerken der Kanarischen Inseln. Der zusammenhanglose Charakter der kanarischen archäologischen Landschaft und mangelnde Einigkeit über die korrekte Anwendung von Radiokarbon-Datierungsmethoden tragen zu regen Diskussionen zwischen Wissenschaftler bei. Für die Kanarischen Inseln bewertet die Verfasserin die aktuellen Veröffentlichungen über altDNA, betrachtet Ansiedlungstheorien sowie die chronologischen Begründungen von verschiedenen Besiedlungsmodellen und erwägt, inwiefern diese Perspektiven den gegenwärtigen Denkweisen über die Kolonisation von Inseln entsprechen. Translation by Madeleine Hummler

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of the European Association of Archaeologists

Introduction: The Canaries and Aboriginal Origins

Population origins and the development of insular cultures in the Canary Islands present archaeology with complex questions. Various proposals regarding the initial human occupation of this region suggest a broad timeframe spanning from c. 1000 bc to ad 300. Palaeogenetic evidence, discussed below, hints at the influence of at least two major migratory events led by North African populations. Analysis of ancient DNA (aDNA) from Canary aboriginals reveals a genetic mosaic with contributions from North African, sub-Saharan, and southern European haplogroups. However, despite archaeological advances, fundamental questions common to theory of island archaeologies, such as the ‘who, when, where from, and why’ (Napolitano et al., Reference Napolitano, DiNapoli, Stone, Napolitano, Stone and DiNapoli2021: 15) continue to challenge scholars in the context of the Canary Islands. Obstacles arise from the highly disturbed state of the Canarian aboriginal material record and the subtle fragmentation in collaborative approaches.

European colonization began in the fifteenth century ad, followed by 200 years of looting motivated by antiquarianism causing the loss of innumerable artefacts and mortuary remains (Álvarez Sosa & Morfini, Reference Álvarez Sosa and Morfini2014; Ortiz-García, Reference Ortiz-García2016). Since the 1950s, overdevelopment to satisfy tourist demands and the consequent destruction of archaeological sites (Mazzola de Los Ríos, Reference Mazzola de Los Ríos2016) have left many unfillable gaps. Furthermore, the politicization of archaeology to legitimize nationalist movements, such as those led by the Francoist regime or the 1980s Canarian terrorist group known as the Movement for the Independence and Autonomy of the Canarian Archipelago (MPAIAC), have tainted academic and public discourse (Farrujia de la Rosa & del Arco-Aguilar, Reference Farrujia de la Rosa, del Arco-Aguilar, de Barradas, Sánchez and Morales-Padrón2004).

Currently, two theoretical perspectives, labelled here the Mediterraneanist versus North Africanist stance, dominate discussions on the peopling of the Canary Islands. Both acknowledge the importance of the Maghreb region as an ancestral place of origin for tribes of the Canary Islands, but the Mediterraneanists differ from the North Africanists in hypotheses related to the cultural and chronological origin of the first settlers (Figure 1).

Figure 1. Location of the Canary Islands and surrounding territories within the temporal context of c. 270 bc. Major Punic—later Roman—urban centres are marked with their Latin names. Given our lack of knowledge on the exact routes that ancient settlers used to reach the archipelago, the paths drawn are not intended to represent literal routes proposed by other authors; instead, they are provided as a guide to illustrate differences in peopling origins within the Maghreb region.

Mediterraneanists posit that the Canary archipelago was settled during the Late Bronze Age to Iron Age transition by palaeo-Berber populations of Phoenico-Punic affinity (Atoche-Peña, Reference Atoche-Peña, Waldren and Ensenyat2002). Following a stepping-stone model (del-Arco-Aguilar, 2021), Phoenician seafarers are thought to have moved westward from the easternmost islands, establishing economic outposts along the north-western African coasts for resource exploitation (Bueno-Ramírez et al., Reference Bueno-Ramírez, Balbín-Behrmann, del Arco-Aguilar and González-Antón1995; González Antón et al., Reference González Antón, del Arco Aguilar, Balbín Behrmann and Bueno Ramírez1998; González Antón & del Arco Aguilar, Reference González Antón and del Arco Aguilar2009). Romanized North African peoples subsequently maintained these commercial outposts (Mederos Martín & Escribano Cobo, Reference Mederos Martín and Escribano Cobo2002), possibly in contact with earlier Phoenico-Punic (and/or) palaeo-Berber islanders. In Lanzarote, Roman material culture has been found alongside native artefacts at El Bebedero, Caldereta de Tinache, and Buenavista (Atoche-Peña, Reference Atoche-Peña2011) (Figure 2). Recent discoveries, including the Lobos royal red factory (del-Arco-Aguilar et al., Reference del-Arco-Aguilar, del-Arco-Aguilar, Benito-Mateo and Rosario-Adrián2016), confirm the Roman presence in the Canary Islands (Blázquez, Reference Blázquez1977). Pliny the Elder's Historia Naturalis additionally describes the profiteering character of Roman incursions (Santana Santana, Reference Santana Santana2002).

Figure 2. The Canary Islands with sites mentioned in the text noted.

North Africanists propose that the peopling of the Canary Islands was led by autochthonous Amazigh groups, the ancestors of pastoralist Berbers from present-day Morocco, Tunisia, and Algeria (Navarro Mederos, Reference Navarro Mederos1997; Tejera Gaspar et al., Reference Tejera Gaspar, Chávez Álvarez and Montesdeoca2006; Fregel et al., Reference Fregel, Ordóñez, Santana-Cabrera, Cabrera, Velasco-Vazquez and Alberto2019). This approach encompasses various peopling models with differing timelines. Some scholars attribute the relocation of unskilled seafaring Berber tribes to the Romans (Tejera Gaspar et al., Reference Tejera Gaspar, Chávez Álvarez and Montesdeoca2006; Jiménez González, Reference Jiménez González2013). Others interpret rock art and linguistics as evidence of initial settlement around 500 bc, first by an ‘Archaic Amazigh’ group followed by a ‘Romanized Amazigh’ migration (Farrujia de la Rosa et al., Reference Farrujia de la Rosa, Pichler and Rodrigue2009). Another perspective, using human skeletal remains from funerary contexts, suggests a multiple-wave settlement process starting around ad 250, with a second migration around ad 600 (Alberto-Barroso et al., Reference Alberto-Barroso, Velasco-Vázquez, Delgado-Darias, Moreno-Benítez and Castillo2020, Reference Alberto-Barroso, Velasco-Vázquez, Delgado-Darias and Moreno-Benítez2021). Currently, no human remains dating to before c. ad 250 have been found (Figure 2).

Issues regarding radiocarbon dates ensure that the North Africanists and Mediterraneanists continue to disagree (Velasco-Vázquez et al., Reference Velasco-Vázquez, Alberto-Barroso, Delgado-Darias, Moreno-Benítez, Lécuyer and Richardin2020; Atoche-Peña & del-Arco-Aguilar, Reference Atoche-Peña and del-Arco-Aguilar2023). Additionally, there has been a tendency to underutilize indirect evidence from palaeoecology and palaeostratigraphic studies that suggest a human presence in the Canaries during the mid- to late Holocene (Meco et al., Reference Meco, Lomoschitz, Rodríguez, Ramos, Betancort and Coca2018; Ravazzi et al., Reference Ravazzi, Mariani, Criado, Garozzo, Naranjo-Cigala and Perez-Torrado2021). A lack of archaeological findings suggesting inter-insular communication obscures knowledge on the ancient seafaring abilities of Canary tribes. Finally, the casual use of words like ‘exploration’, ‘utilization’, and ‘settlement’ or ‘colonization’ confuses discourses of settlement models in Canarian archaeology. These issues have fuelled debate whether substrate populations arrived independently or were brought in.

Island Settlement and Archaeological Theory

The literature on island archaeology regarding human insular settlement is vast, drawing on many influences (Sahlins, Reference Sahlins1955; Broodbank, Reference Broodbank2000; Erlandson & Fitzpatrick, Reference Erlandson and Fitzpatrick2006; Rainbird, Reference Rainbird2007; Dawson, Reference Dawson2014). Biogeography is seen as the foundation for theory on island archaeology (Evans, Reference Evans and Renfrew1973) and it emphasized the ecological constraints and origins of biological diversity within insular environments (MacArthur & Wilson, Reference MacArthur and Wilson1967). Human biogeography put special attention to size, distribution, population structure, and interactivity among island communities (Terrell, Reference Terrell1976). In Mediterranean landscapes, Cherry (Reference Cherry1981) defied biological determinism by arguing that human island occupation was a nuanced sociocultural process. Then, the term ‘islandscapes’ was introduced to underline the human element in island lifestyles and landscape awareness (Broodbank, Reference Broodbank2000). The dichotomy between isolation and interaction has been largely discussed (Terrell et al., Reference Terrell, Kelly and Rainbird2001; Fitzpatrick & Anderson, Reference Fitzpatrick and Anderson2008), stressing that island communities should be studied with other geographic systems (Terrell, Reference Terrell2020; Dawson et al., Reference Dawson, Picornell-Gelabert, Calvo-Trias, Servera-Vives and Valenzuela-Oliver2023).

Deciphering the peopling of islands has relied on multiple settlement models. Initially, archaeological theories of insular occupation were grounded in comparative ethnology, with diffusionism prominent in the early twentieth century. As the discipline transitioned towards multidisciplinarity, holistic models began to integrate anthropology's four-field approach, which combines linguistics, archaeology, physical, and cultural anthropology (Patrick, Reference Patrick2010). Multiple factors may have influenced human migration. Environmental approaches, considering past landscape changes, elucidate how the Pleistocene sea level drop may have driven the peopling of Island Southeast Asia for example (O'Connor & Hiscock, Reference O'Connor, Hiscock, Cochane and Hunt2018). Ideological processes may also have prompted human migration to new regions (Napolitano et al., Reference Napolitano, DiNapoli, Stone, Napolitano, Stone and DiNapoli2021). Observed among Polynesian island tribes, the practice of primogeniture restricted non-firstborn offspring from inheriting local land, thus potentially facilitating the ancient settlement of new landscapes (Bellwood, Reference Bellwood, Fox and Sather1996). Furthermore, the study of seafaring technology has been key in understanding settlement narratives.

Human Settlement Models for the Canary Islands

In using the categories by Guerrero Ayuso (Reference Guerrero Ayuso2001) to discuss the phases of human settlement in the Canary Islands, I emphasize the differences between discovery or exploration, utilization, and settlement or colonization. Exploratory activities encompass purposeful, planned missions, followed by utilization, defined as ‘many, tentative, impermanent, short-distance reciprocal movements’ (Cherry, Reference Cherry1981: 60), preceding stable settlements. Archaeologists recognize the complexity of finding material culture and human remains linked to early exploration (Dawson, Reference Dawson2004). In the Canaries, coastal landscape alterations due to tourism-related development projects (Mazzola de Los Ríos, Reference Mazzola de Los Ríos2016) have hindered the investigation of sites where discovery activities may have occurred. Mediterraneanists argue that evidence of ancient exploration resides in ancient rock art. The petroglyphs of Barranco de Tinojay, Fuerteventura (Amezcua, Reference Amezcua, Hormiga, Arbelo and Mesa1995), and in El Cercado, La Palma (Mederos Martín & Escribano Cobo, Reference Mederos Martín and Escribano Cobo1997) (Figure 2), suggest depictions of Phoenician ships (González Antón et al., Reference González Antón, del Arco Aguilar, Balbín Behrmann and Bueno Ramírez1998). Ancient texts also provide evidence of pre-Hellenic seafaring expeditions to the Canaries. Accounts such as the fourth-century bc Periplus of Pseudo-Scylax (Shipley, Reference Shipley2020), Pharaoh Necho II's expedition to Africa around 600 bc, the voyages of the Greek geographer Hecataeus of Miletus (c. 550–476 bc), and the fifth-century bc Carthaginian Hanno the Navigator together suggest an exploratory phase during the Iron Age preceding settlement in the Canary Islands (Santana Santana, Reference Santana Santana2002).

The possibility of exploratory arrivals evolving into utilization during the Bronze Age aligns with the long history of Homo sapiens’ oceanic navigation (Westaway, Reference Westaway2019). Considering the known Phoenician presence on African Atlantic coasts (Stieglitz, Reference Stieglitz1984), a Phoenico-Punic arrival to the Canaries during the Late Bronze Age (González Antón & del Arco Aguilar, Reference González Antón and del Arco Aguilar2007) does not oppose additional small-scale arrivals of north-western African herders. These groups may have ventured onto the seas for various reasons, such as escaping demographic or environmental pressures (Onrubia Pintado, Reference Onrubia Pintado2001). During a stage of frequent visitation, the first settlers would have begun the process of landscape learning via cultural adaptations (Dawson, Reference Dawson2014) leading towards establishment of permanent communities and potential colonization of natural resources. Insular settlement stages may, however, not be linear, resulting in multiple settlement attempts by different people (Guerrero Ayuso, Reference Guerrero Ayuso2001). Consequently, abandonment becomes a factor (Dawson, Reference Dawson2010), introducing complexity into the study of island peopling. According to Castilian chronicles written between the fifteenth and seventeen centuries ad, an ancient Canarian provenance myth attributes their origin to an abandonment by seafarers (Jiménez Gómez, Reference Jiménez Gómez2003). Mediterraneanists hypothesize abandonment as part of the fall of the Carthaginians post Punic Wars, leaving a reduced population in the islands or complete desertion until the arrival of the Romans. Upon the fall of the Roman Empire, another major abandonment may have occurred (Atoche-Peña, Reference Atoche-Peña2013).

Distinguishing between visitation and colonization is necessary to understanding the process involved in landscape exploitation. However, the often-limited archaeological material from these settlement stages presents a challenge (Broodbank, Reference Broodbank and Halstead1999; Guerrero Ayuso, Reference Guerrero Ayuso2001). In the Canary Islands, osteological evidence from exploration and/or utilization periods is scarce—or non-existent—compared to the extensive skeletal record found in permanent settlements and/or colonization contexts. Site preservation is also a problem when attempting to identify peopling stages based on architectural typologies. Aboriginal architecture in the Canaries is characterized by freestanding stone walls and the construction of artificial caves, while natural cavities were often used for burials (Rodríguez-Martín & Martín-Oval, Reference Rodríguez-Martín and Martín-Oval2009; Alberto-Barroso et al., Reference Alberto-Barroso, Delgado-Darias, Velasco-Vázquez and Santana-Cabrera2016). The repurposing of early settlements by historical inhabitants and local herders further complicates stratigraphic analyses. Yet, indirect clues may be found through palaeoecological studies. For instance, the presence of Mus musculus domesticus (house mouse) has been linked to a Roman presence in El Bebedero, Lanzarote (Criado & Atoche, Reference Criado and Atoche2003). The single specimen KIA-36470, calibrated using intcal04.14C and with 2σ interval, yielded an age of ad 128–313 (1815 ± 25 bp) (Alcover et al., Reference Alcover, Rando, García-Talavera, Hutterer, Michaux and Trias2009). Furthermore, at La Monja site in Fuerteventura (Figure 2), researchers found an ovicaprid bone and red ochre within an alluvial deposit intercalated between two marine beachrocks from two Holocene highstands. The lower deposit, dating to about 2830 bc (Meco et al., Reference Meco, Muhs, Fontugne, Ramos, Lomoschitz and Patterson2011), represents the Middle Holocene period, while the younger deposit, dated at about ad 490, represents the Late Holocene period (Meco et al., Reference Meco, Muhs, Fontugne, Ramos, Lomoschitz and Patterson2011; Reference Meco, Lomoschitz, Rodríguez, Ramos, Betancort and Coca2018). Despite the long chronological gap between these dated deposits, the stratigraphic nature has been interpreted as an indication of anthropogenic landscape changes causing erosion during a period of use (Onrubia Pintado et al., Reference Onrubia Pintado, Meco and Fontugne1997).

The transformation of forests into open landscapes is often linked to land optimization for grazing and agriculture, characteristic of permanent and intensive anthropogenic activities (Guerrero Ayuso, Reference Guerrero Ayuso2001). Evidence of such modifications in the Canary Islands has been investigated via palynological records from sediment cores in the La Laguna Lake basin, Tenerife. This evidence suggests a decline in Quercus (oak) and Carpinus (birch) pollen taxa between 2735 and 35 bc, coinciding with the emergence of shrubs, grasses, and the laurel forest (de Nascimento et al., Reference de Nascimento, Willis, Fernández-Palacios, Criado and Whittaker2009). Fossil charcoal remains hint at the occurrence of intense fires in La Gomera over the last 3600 years, with pollen records documenting a shift in vegetation from the endemic laurel forest to a drier woody heath (Nogué et al., Reference Nogué, de Nascimento, Fernández-Palacios, Whittaker and Willis2013). In Gran Canaria, studies on fossil charcoal reveal an increase in fire episodes around 435–335 bc (de Nascimento et al., Reference de Nascimento, Nogué, Criado, Ravazzi, Whittaker and Willis2015; Reference de Nascimento, Nogué, Naranjo-Cigala, Criado, McGlone and Fernández-Palacios2020).While volcanic activity may have played a role in these deposits, Ravazzi et al. (Reference Ravazzi, Mariani, Criado, Garozzo, Naranjo-Cigala and Perez-Torrado2021) argue that the lack of forest recovery and the abundance of coprophilous fungal spores in sediment cores suggest anthropogenic activity as the likely cause.

An additional characteristic of intensive human settlements is demographic stress (Guerrero Ayuso, Reference Guerrero Ayuso2001), also described by ethnohistory in the Canary Islands (Morales Padrón, Reference Morales Padrón1978). Archaeological evidence from multiple silos throughout Gran Canaria (Ascanio-Padrón et al., Reference Ascanio-Padrón, Mendoza-Medina, Moreno-Benítez, Suárez-Medina and Morales-Padrón2004; Henríquez-Valido et al., Reference Henríquez-Valido, Morales-Mateos, Vidal-Matutano, Santana-Cabrera and Rodríguez Rodíguez2019) confirms the presence of a large native population dependent on surplus. Wheat, barley, and legumes were mostly grown on the larger islands of Gran Canaria and Tenerife, where intensive sheep/goat herding was also practised (del-Arco-Aguilar et al., Reference del-Arco-Aguilar, de-Arco-Aguilar, Atiénzar Armas and Hopf1990; Velasco-Vázquez, Reference Velasco-Vázquez1999; Morales Mateos, Reference Morales Mateos2006). Islanders also hunted and foraged wild resources to supplement their diet (Arnay-de-la-Rosa et al., Reference Arnay-de-la-Rosa, González-Reimers, Yanes, Velasco-Vázquez, Romanek and Noakes2010; Reinhard et al., Reference Reinhard, Martín-Oval, del-Arco-Aguilar, Rodríguez-Maffiotte-Martín and del-Arco-Aguilar2021). Hunter-gatherer economies could have been more significant on islands where agriculture did not reach productive levels, such as in Fuerteventura (González-Reimers et al., Reference González-Reimers, Velasco-Vázquez, Arnay de la Rosa, Santolaria-Fernández and Galindo-Martín2001) or La Palma (Pérez González, Reference Pérez González2007). To cope with carrying capacity, social formations may develop strategies such as crop diversification, storage, subsistence heterogeneity, trading, mobility, and other cultural adaptations (Guerrero Ayuso, Reference Guerrero Ayuso2001). These activities were evident throughout the Canaries since at least c. ad 665 (Morales et al., Reference Morales, Rodríguez, Alberto, Machado, Criado and Rando2013).

Canarian Human Palaeogenomics and Settlement Models

Recent investigations by Serrano and colleagues (Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023) have offered novel wide-genome data and radiocarbon dates showing the potential contributions of three main population sources to basal Canary islanders: ancient Maghrebi, early Neolithic European, and Eurasian Steppe groups. This study reaffirms the high haplotypic diversity among first settlers, indicating genetic variation resulting from at least two major waves of settlement (Rodríguez-Varela et al., Reference Rodríguez-Varela, Günther, Krzewińska, Storå, Gillingwater and MacCallum2017; Fregel et al., Reference Fregel, Ordóñez, Santana-Cabrera, Cabrera, Velasco-Vazquez and Alberto2019; Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023). Ancient mitochondrial DNA (mtDNA) analyses support the idea that matrilineal kinship systems were in place, at least within the population of Punta Azul, in El Hierro Island (Ordóñez et al., Reference Ordóñez, Arnay and Fregel2021). Also, palaeogenetics provides valuable insights into inter- and intra-insular migration trends. For example, it reveals the presence of the mtDNA haplogroup H in Tenerife (47.2 per cent) and La Palma (56.7 per cent) suggesting reciprocal contact between the western Canary Islands (Fregel et al., Reference Fregel, Pestano, Arnay, Cabrera, Larruga and Gonzalez2009), but not with the eastern islands (Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023). Hence, it has been proposed that there was some inter-island connectivity during the second to ninth centuries ad, followed by a period of isolation from the ninth to the fourteenth century. Yet, the easternmost region faces a challenge, as the primary palaeogenetic dataset comes from Gran Canaria and Tenerife, with Lanzarote and Fuerteventura represented by only four individuals dated between the seventh and ninth centuries ad. The absence of human remains for the eastern islands is problematic, considering the stepping-stone model assumes this region would have been occupied first (Atoche-Peña & del-Arco-Aguilar, Reference Atoche-Peña and del-Arco-Aguilar2023), and should therefore provide the oldest human genotypes. Interestingly, genomic data from extant barley seeds indicates that an older grain strain was grown in Lanzarote and exchanged between eastern and western islands (Hagenblad & Morales, Reference Hagenblad and Morales2020), thus supporting the stepping-stone model.

The diversity detected in aDNA findings has already been observed in the archaeological and ethnohistoric record. This is evident in the presence of different ceramic types, votive iconography, burial practices, political systems, and language (Onrubia Pintado, Reference Onrubia Pintado1992; Navarro Mederos, Reference Navarro Mederos1997; Alberto-Barroso & Velasco-Vázquez, Reference Alberto-Barroso and Velasco-Vázquez2010; del Pino Curbelo et al., Reference del Pino Curbelo, Rodríguez Rodríguez, Buxeda i Garrigós, Mangas Viñuela, Day and González Quintero2016). Attributing the origins of the initial settlers to North African descent is merely stating a geographical reality. The novelty lies in recognizing the ethnic and cultural diversity that existed among the ancient Canary aboriginals, evident in both their paternal and maternal ancestral lines (Supplementary Materials: Tables S1 and S2). The presence of Y-chromosome single nucleotide polymorphisms such as T-M184 or E-M33 have acknowledged the membership of first islanders to broader ancestral groups like T or E haplogroups from different geographic origins (Table S2). The human settlement of the Canary archipelago was a complex process, marked by intricate migratory movements akin to those involved in the peopling of the vast region of North Africa over millennia (Simões et al., Reference Simões, Günther, Martínez-Sánchez, Vera-Rodríguez, Iriarte and Rodríguez-Varela2023).

Overreliance on a single method to determine the initial human settlement of the Canaries and neglecting island settlement theory and traditional archaeological methods may yield oversimplified population stories. As mentioned earlier, distinct stages of insular colonization leave behind specific archaeological evidence. The majority of radiocarbon dates associated to palaeogenetic findings belong to ad fifth century and beyond. Hence, I suggest that skeletal material used in aDNA investigations may belong to adapted populations, indicating a stage of permanent settlement rather than an initial colonization or exploration period in the Canary Islands. Another issue concerns the lack of emphasis on radiocarbon methodology. The most influential and recent publications in Canarian palaeogenetics (Fregel et al., Reference Fregel, Ordóñez, Santana-Cabrera, Cabrera, Velasco-Vazquez and Alberto2019; Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023) do not provide details on the laboratory methods used to obtain chronological data from human bone, and they often lack proper calibration of dates. This oversight is particularly concerning for islander populations with direct access to marine resources that would possibly increase the reservoir effect from enriched marine carbon consumed via food. Thus, if archaeologists are to solely rely on the accuracy and precision of the radiocarbon dating method to support specific population histories, we should then consider the intricacies behind the methods and the interpretation of quantitative results.

Radiocarbon Dating and Canarian Archaeology

Chronologies, both radiocarbon and dated aDNA data, are contested in Canarian archaeology (for a comprehensive list of radiocarbon measurements published in the Canaries, see the bibliography cited in this section and sources therein). Some researchers dispute the validity of key dates obtained from long-lived materials such as wood or charcoal (Pardo-Gordó et al., Reference Pardo-Gordó, González Marrero, Vidal Matutano and Rodríguez-Rodríguez2022). Insufficient stratigraphic context or doubtful laboratory practices contribute to the scepticism (Velasco-Vázquez et al., Reference Velasco-Vázquez, Alberto-Barroso, Delgado-Darias, Moreno-Benítez, Lécuyer and Richardin2020) surrounding the utilization of chronologies proposing a Late Bronze and Early Iron Age human settlement (Atoche-Peña & del-Arco-Aguilar, Reference Atoche-Peña and del-Arco-Aguilar2023). Also, radiocarbon chronologies indicating that the colonization of Gran Canaria took place in c. ad 300 (Alberto-Barroso et al., Reference Alberto-Barroso, Delgado-Darias, Moreno-Benítez and Velasco-Vázquez2019) cast doubts on the basis of collagen processing methods used to prepare bone samples (Pardo-Gordó et al., Reference Pardo-Gordó, González Marrero, Vidal Matutano and Rodríguez-Rodríguez2022). Other issues affecting human collagen radiocarbon dating include a lack of consideration for the calibration of chronometric measurements such as the marine carbon reservoir effect (MCRE) and the establishment of a local regional (ΔR) offset (Pardo-Gordó et al., Reference Pardo-Gordó, González Marrero, Vidal Matutano and Rodríguez-Rodríguez2022). Furthermore, the methodological challenges to define and discuss all components of Bayesian modelling in constructing 14C sequences are a pervasive issue in archaeology (Bayliss, Reference Bayliss2015), and so in the Canaries.

In the Canaries, the current body of radiocarbon-dated skeletons is marked by a conspicuous absence of information regarding laboratory pretreatment protocols. This omission hampers our ability to assess the reliability of results. Notably, even in the most comprehensive aDNA dataset published to date, there remains a gap in the discussion of the methodology employed to obtain 14C dates from human skeletons, particularly those involving non-collagen data (Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023). In the field of Canarian archaeology, discrepancies remain on the appropriateness of the sample materials despite established global agreements (Waters et al., Reference Waters, Stafford and Carlson2020) and the absence of detailed sample cleaning protocols to isolate collagen (Devièse et al., Reference Devièse, Stafford, Waters, Wathen, Comeskey and Becerra-Valdivia2018). Furthermore, caution is warranted when interpreting dates derived from sediments, ash, and those generated at the Gakushuin laboratory (Blakeslee, Reference Blakeslee1994; Waters et al., Reference Waters, Stafford and Carlson2020).

Of considerable concern for the chronometric hygiene of published datasets from ancient Canarian human bone, the MCRE is not considered here when applying calibration curves to radiocarbon dates (Pardo-Gordó et al., Reference Pardo-Gordó, González Marrero, Vidal Matutano and Rodríguez-Rodríguez2022). The lag in carbon cycling between the atmosphere and the surface ocean, compounded by exchanges between surface and deeper ocean radiocarbon levels, further complicates the mixing process. Indeed, regions characterized by notable ocean upwelling events, as observed in coastal southern Iberia (Monge Soares, Reference Monge Soares1993), exhibit variations in radiocarbon concentrations due to seawater mixing and upwelling phenomena that ought to be considered (Bronk Ramsey, Reference Bronk Ramsey2008). The Canary archipelago is possibly affected by different upwelling events, such as the north-west Africa coastal upwelling system (Soares & Dias, Reference Soares and Dias2007). In a study by Matos Martins and colleagues (Reference Matos Martins, Mederos Martín, Cesário Portela and Monge Soares2012), using archaeological marine shells, burnt wood, and/or bones from Fuerteventura and Tenerife, researchers calculated differential offsets in Tenerife showing lower ΔR values (weighted mean 0 ± 35 14C yr) compared to Fuerteventura (+185 ± 30 14C yr). A high ΔR has been correlated with strong upwelling versus the low or negative ΔR that represents less seawater rising (Matos Martins et al., Reference Matos Martins, Mederos Martín, Cesário Portela and Monge Soares2012). Although context uncertainty exists in some of the samples utilized by Matos Martins and colleagues (Reference Matos Martins, Mederos Martín, Cesário Portela and Monge Soares2012), their work establishes a precedent for a careful consideration of oceanic phenomena, particularly the MCRE impacting 14C measurements in ancient human bone of the Canary Islands.

Discussion

Unravelling the Canarian aboriginal past is complex. Homogenizing terms such as ‘North African’, ‘Berber’, or ‘Amazigh’ simplify the story and do not account for the geographical vastness of the Maghreb, nor the inherent cultural and linguistic diversity that existed for millennia in North Africa and the Mediterranean. Furthermore, without providing some sort of settlement model that reconciles the nuances involving the usage of terminology in island colonization literature, the proposal of North African herders as sole settlers of the archipelago seems incomplete. We might ask, for example, why established mountainous communities would embark on a risky seafaring voyage, taking with them their entire cultural and economic package. Non-endemic Canary items such as fig trees are an example of the careful planning behind the successful peopling of the region. Hence, the complex stories of exploration and settlement may be seen as diverse, accommodating various scenarios. This includes the possibility of both skilled Bronze Age navigators and herding populations of north-west Africa playing roles in the region's history throughout the mid- to late Holocene period.

Archaeological, ethnohistoric, and linguistic data have already pointed to a multiplicity of groups responsible in the peopling of the archipelago. Palaeogenomics has confirmed that such diversity is the result of founding effects, genetic drift, bottleneck phenomena, and waves of population replacement (Rodríguez-Varela et al., Reference Rodríguez-Varela, Günther, Krzewińska, Storå, Gillingwater and MacCallum2017; Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023). In the Punta Azul site, a bottleneck effect was a likely precursor of the total fixation of H1cf mtDNA haplotype among its population (Ordóñez et al., Reference Ordóñez, Fregel, Trujillo-Mederos, Hervella, de-la-Rúa and Arnay-de-la-Rosa2017). This marker suggests specific kinship practices supported by matrilineal ties to a common female ancestor that carried H1cf (Ordóñez et al., Reference Ordóñez, Arnay and Fregel2021). These findings are an example of how archaeometry can be used to answer anthropological questions and enable us to deepen insights into the cultural development of prehistoric Canarian societies. By integrating different sources of knowledge, we may be able to better understand quantitative results. For example, what does the difference in genetic packages between the eastern and western Canary Islands say about migratory trends and social complexity in the region? Folklore from ethnohistoric sources, such as the legend of Tauco and Guajara or the incursions by Gran Canaria aboriginals into the easternmost islands (Mederos Martín & Escribano Cobo, Reference Mederos Martín and Escribano Cobo2005), depicts an antagonistic relationship between some of these insular groups. These stories illustrate interaction rather than isolation, and perhaps these relationships did not always result in genetic mixing.

Integrating complex methods from the natural sciences with the social sciences can give rise to epistemological challenges, and these issues have led to recent discussions on proper methodological practices (Cook et al., Reference Cook, Ascough, Bonsall, Hamilton, Russell and Sayle2015; Roberts et al., Reference Roberts, Fernandes, Craig, Larsen, Lucquin and Swift2018). Archaeology is a difficult science that has changed through a series of paradigm shifts, the most recent of which is the ‘Third Science Revolution’ that prioritizes Big Data (Kristiansen, Reference Kristiansen2014). However, in a recent presentation, Girotto and Price (Reference Girotto and Price2023) argue that archaeological data is ‘messy’ instead of ‘big’ and that, despite machine learning and quantitative determinism, we still do not understand the semantic patterns of the past. Unsurprisingly, the more quantitative results are obtained, the greater the realization of human complexity. Rightly so, ‘amassing larger datasets does not remove the explanatory nature of the creation of these datasets’ (Chilton, Reference Chilton2014: 38). Some authors even question the interdisciplinary character of quantitative archaeology (Ribeiro, Reference Ribeiro2021). The Third Science Revolution may not be as interdisciplinary as marketed, since it professes a single way of acquiring information and/or conducting research via the materialist approach (Ribeiro, Reference Ribeiro2022). The knowledge gathered from combining art or philosophy and archaeology is generally not regarded as interdisciplinary. Additional critiques suggest that interdisciplinarity might be making archaeology less collaborative as divisions ensue diversity of interpretations with ‘different cliques insulating themselves in their own ivory towers’ (Ribeiro, Reference Ribeiro2022: 96).

These divisions between archaeology and interdisciplinary methodologies have surfaced in the press (Callaway, Reference Callaway2018; Galán, Reference Galán2018), with archaeologists arguing that sociocultural complexity cannot be explained via haplotypes or radiocarbon dates alone. Palaeogenomic and absolute dating provide valuable information. Yet, they may not fully account for the explanatory power of the theoretical models of traditional archaeology, such as the sociopolitical, economic, and/or environmental processes that can help us understand the prehistoric peopling of islands.

Archaeologists face challenges in effectively communicating study results, especially as aDNA findings make international headlines. For instance, attributing North African ancestry to ancient Canary aboriginals is vague, as the term ‘North African’ covers the region from Western Sahara, including the Canary Islands, to Egypt. This simplistic terminology, though media-friendly (Efe, 2023), lacks nuance in understanding North Africa's population history. For example, haplotypes observed in ancient aboriginal Canarians are also found in Bronze Age Mediterranean groups (Tables S1 and S2). Admixture modelling indicates that the Steppe pedigree in the archipelago may have originated from populations with ancestry linked to Phoenico-Punics from Ibiza and Sardinia, as well as Romans from England (Serrano et al., Reference Serrano, Ordóñez, Santana, Sánchez-Cañadillas, Arnay and Rodríguez-Rodríguez2023). The presence of sub-Saharan haplotypes raises questions about whether they result from independent migrations from West African coasts. Onrubia Pintado (Reference Onrubia Pintado2001) proposed a similar hypothesis with migrations through the Tarfaya basin around the first millennium bc. Finally, models of insular settlement put forth by archaeometry tend to downplay the seafaring element perhaps potentially shaped by assumptions on the technological proficiency of certain groups. Neglecting the role of seafaring in the success of early settlers may contribute to greater informational gaps behind these complex processes.

Conclusions

Crafty archaeology involves both talent and innovation in the process of using method, theory, and philosophy to unravel the past (Shanks & McGuire, Reference Shanks and McGuire1996). In the Canarian context, this means quantitative data must be interpreted in light of ethnohistoric records along with archaeological and anthropological theory. Regarding the Canary Islands, the lack of material evidence dating to the periods of exploration and the utilization of insular resources have proved major obstacles into developing a comprehensive understanding of peopling processes. Additional hurdles include the problem of semantics and overspecialization. In island colonization literature, words such as ‘exploration’, ‘utilization’, and ‘settlement’ or ‘colonization’ must be defined. Unique environmental and cultural contexts shape each definition. Also, the scientific hyper-specialization behind the Third Science Revolution could be contributing to informational gaps between subdisciplines. Here, I have highlighted the lack of an integrated discussion of peopling hypotheses in Canarian archaeology, where the topic is polarized around two main perspectives: North Africanists and Mediterraneanists. As I have discussed here, integrating scientific data, archaeological findings, biogeographic details, and ethnohistoric information provides a less dualistic perspective, capturing the intricate cultural and genetic diversity among ancient aboriginal Canary groups.

Acknowledgements

This article resulted from receiving the Student Award at the 2022 EAA annual meeting in Budapest. I am grateful for the recognition and support of the Award Selection Committee, as well as feedback from the audience. Special thanks to Jorge Onrubia-Pintado, Joaquín Meco, John Terrell, Ricardo Rodríguez-Varela, Anna Linderholm, and my thesis adviser Lori E. Wright for their valuable insights. Much appreciation also goes to the EJA editor and anonymous reviewers for enhancing this manuscript with their constructive comments.

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1017/eaa.2024.4.

References

Alberto-Barroso, V. & Velasco-Vázquez, J. 2010. Manipulación del cadáver y práctica funeraria entre los antiguos canarios: La perspectiva osteoarqueológica. Revista Tabona, 18: 91120.Google Scholar
Alberto-Barroso, V., Delgado-Darias, T., Moreno-Benítez, M.A. & Velasco-Vázquez, J. 2019. La dimensión temporal y el fenómeno sepulcral entre los antiguos Canarios. Zephyrus, 84: 139–60.CrossRefGoogle Scholar
Alberto-Barroso, V. Delgado-Darias, T., Velasco-Vázquez, J. & Santana-Cabrera, J. 2016. En la ambigüedad de tu piel: Sobre momias y tumbas. Revista Tabona, 20: 3360.Google Scholar
Alberto-Barroso, V., Velasco-Vázquez, J., Delgado-Darias, T. & Moreno-Benítez, M.A. 2020. Los antiguos canarios ante la muerte: Tradición vs ruptura. In: Castillo, Julio, ed. Gran Canaria las Huellas del Tiempo (Actas XV Semana Científica Telesforo Bravo). Instituto de Estudios Hispánicos de Canarias , pp. 1340.Google Scholar
Alberto-Barroso, V., Velasco-Vázquez, J., Delgado-Darias, T. & Moreno-Benítez, M.A. 2021. The End of a Long Journey: Tumulus Burials in Gran Canaria (Canary Islands) in the Second Half of the First Millennium ad. Azania: Archaeological Research in Africa, 56: 281303.CrossRefGoogle Scholar
Alcover, J.A., Rando, J.C., García-Talavera, F., Hutterer, R., Michaux, J., Trias, M., et al. 2009. A Reappraisal of the Stratigraphy of Cueva del Llano (Fuerteventura) and the Chronology of the Introduction of the House Mouse (Mus musculus) into the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 277: 184–90. https://doi.org/10.1016/j.palaeo.2009.03.016CrossRefGoogle Scholar
Álvarez Sosa, M. & Morfini, I. 2014. Tierras de momias. La técnica de eternizar en Egipto y Canarias Tenerife: Ad Aegyptum.Google Scholar
Amezcua, J. 1995. Los grabados naviformes de Tinojay. In: Hormiga, A.F.M., Arbelo, E.R.D.L. & Mesa, J.R.B., eds. IV Jornadas de Estudio sobre Lanzarote y Fuerteventura. Arrecife: Cabildo Insular de Lanzarote, pp. 557615.Google Scholar
Arnay-de-la-Rosa, M., González-Reimers, E., Yanes, Y., Velasco-Vázquez, J., Romanek, C.S. & Noakes, J.E. 2010. Paleodietary Analysis of the Prehistoric Population of the Canary Islands Inferred from Stable Isotopes (Carbon, Nitrogen, and Hydrogen) in Bone Collagen. Journal of Archaeological Science, 37: 1490–501. https://doi.org/10.1016/j.jas.2010.01.009CrossRefGoogle Scholar
Ascanio-Padrón, A., Mendoza-Medina, F., Moreno-Benítez, M. & Suárez-Medina, I. 2004. Intervención arqueológica en El Tejar (Santa Brígida, Gran Canaria): Primeros resultados. In: Morales-Padrón, F., ed. XV Coloquio de Historia Canario-Americana. Las Palmas: Cabildo de Gran Canaria, pp. 2131–46.Google Scholar
Atoche-Peña, P. 2002. La colonización del archipiélago canario: ¿Un proceso mediterráneo? In: Waldren, W.H. & Ensenyat, J.A., eds. World Islands in Prehistory: International Insular Investigations (BAR International Series, 1095), Oxford: British Archaeological Reports, pp. 337–54.Google Scholar
Atoche-Peña, P. 2011. Excavaciones arqueológicas en el sitio de Buenavista (Lanzarote): Nuevos datos para el estudio de la colonización protohistórica del archipiélago. Gerión, 29: 5982.Google Scholar
Atoche-Peña, P. 2013. Consideraciones en la relación con la colonización Protohistórica de las Islas Canarias. Anuario de Estudios Atlánticos, 59: 521–64.Google Scholar
Atoche-Peña, P. & del-Arco-Aguilar, M.C. 2023. Carbono 14 y colonización protohistórica de las Islas Canarias: La importancia del contexto arqueológico en la interpretación histórica. Anuario de Estudios Atlántico, 69: 134.Google Scholar
Bayliss, A. 2015. Quality in Bayesian Chronological Models in Archaeology. World Archaeology, 47: 677700. https://doi.org/10.1080/00438243.2015.1067640CrossRefGoogle Scholar
Bellwood, P. 1996. Hierarchy, Founder ideology, and Austronesian Expansion. In: Fox, J. & Sather, C., eds. Origins, Ancestry and Alliance: Explorations in Austronesian Ethnography. Canberra: Department of Anthropology, Australian National University, pp. 1840.Google Scholar
Blakeslee, D.J. 1994. Reassessment of Some Radiocarbon Dates from the Central Plains. Plains Anthropologist, 39: 203–10.CrossRefGoogle Scholar
Blázquez, J.M. 1977. Las Islas Canarias en la antigüedad. Anuario de Estudios Atlánticos, 23: 3550.Google Scholar
Bronk Ramsey, C. 2008. Radiocarbon Dating: Revolutions in Understanding. Archaeometry, 50: 249–75. https://doi.org/10.1017/S0033822200039473CrossRefGoogle Scholar
Broodbank, C. 1999. Colonization and Configuration in the Insular Neolithic of the Aegean. In: Halstead, P., ed. Neolithic Society in Greece. Sheffield: Sheffield Academic Press, pp. 1541.Google Scholar
Broodbank, C. 2000. An Island Archaeology of the Early Cyclades. Cambridge: Cambridge University Press.Google Scholar
Bueno-Ramírez, P., Balbín-Behrmann, R., del Arco-Aguilar, M.C. & González-Antón, R. 1995. Datos sobre la colonización púnica de las Islas Canarias. ERES Arqueología/Bioantropología, 6: 728.Google Scholar
Callaway, E. 2018. The Battle for Common Ground. Nature, 555: 573–76. https://doi.org/10.1038/d41586-018-03773-6CrossRefGoogle Scholar
Cherry, J.F. 1981. Pattern and Process in the Earliest Colonization of the Mediterranean Islands. Proceedings of the Prehistoric Society, 47: 4168. https://doi.org/10.1017/S0079497X00008859CrossRefGoogle Scholar
Chilton, E.S. 2014. Plus Ça Change: From Postprocessualism to ‘Big Data’: A Response to ‘Towards a New Paradigm? The Third Science Revolution and its Possible Consequences in Archaeology’. Current Swedish Archaeology, 22: 3540. https://doi.org/10.37718/CSA.2014.02Google Scholar
Cook, G.T., Ascough, P.L., Bonsall, C., Hamilton, W.D., Russell, N., Sayle, K.L., et al. 2015. Best Practice Methodology for 14C Calibration of Marine and Mixed Terrestrial/Marine Samples. Quaternary Geochronology, 27: 164–71. https://doi.org/10.1016/j.quageo.2015.02.024CrossRefGoogle Scholar
Criado, C. & Atoche, P. 2003. Estudio geoarqueológico del yacimiento de El Bebedero (siglos I a. C. a XIV d. C., Lanzarote, Islas Canarias). Cuaternario y Geomorfología, 17: 91104.Google Scholar
Dawson, H. 2004. Understanding Colonisation: Adapatation Strategies in the Central Mediterranean Islands. Accordia Research Papers, 10: 3560.Google Scholar
Dawson, H. 2010. ‘One, None, and a Hundred Thousand’: Settlements and Identities in the Prehistoric Mediterranean Islands. Shima, 4: 8298.Google Scholar
Dawson, H. 2014. Mediterranean Voyages: The Archaeology of Island Colonisation and Abandonment. Abingdon: Routledge.Google Scholar
Dawson, H., Picornell-Gelabert, L., Calvo-Trias, M., Servera-Vives, G. & Valenzuela-Oliver, A. 2023. The ‘Island Laboratory’ Revisited: Integrating Environmental and Sociocultural Approaches. The Journal of Island and Coastal Archaeology, 18: 110.CrossRefGoogle Scholar
de Nascimento, L., Nogué, S., Criado, C., Ravazzi, C., Whittaker, R.J., Willis, K.J., et al. 2015. Reconstructing Holocene Vegetation on the Island of Gran Canaria Before and After Human Colonization. The Holocene, 26: 113–25. https://doi.org/10.1177/0959683615596836CrossRefGoogle Scholar
de Nascimento, L., Nogué, S., Naranjo-Cigala, A., Criado, C., McGlone, M., Fernández-Palacios, E., et al. 2020. Human Impact and Ecological Changes During Prehistoric Settlement on the Canary Islands. Quaternary Science Reviews, 239: 106332. https://doi.org/10.1016/j.quascirev.2020.106332CrossRefGoogle Scholar
de Nascimento, L., Willis, K.J., Fernández-Palacios, J.M., Criado, C. & Whittaker, R.J. 2009. The Long-Term Ecology of the Lost Forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography, 36: 499514. https://doi.org/10.1111/j.1365-2699.2008.02012.xCrossRefGoogle Scholar
del-Arco-Aguilar, M.C. 2021. De nuevo sobre el descubrimiento y colonización antiguos de Canarias: Reflexiones sobre aspectos teóricos y datos empíricos. Anuario de Estudios Atlánticos, 67: 127.Google Scholar
del-Arco-Aguilar, M.C., de-Arco-Aguilar, M.M., Atiénzar Armas, E. & Hopf, M. 1990. Estudio de los restos vegetales de la Cueva de Don Gaspar y algunas anotaciones sobre la agricultura prehistórica de Tenerife. Investigaciones Arqueológicas, 2: 1329.Google Scholar
del-Arco-Aguilar, M.C., del-Arco-Aguilar, M.M., Benito-Mateo, C. & Rosario-Adrián, M.C. 2016. Un taller romano de púrpura en los límites de la Ecúmene: Lobos 1 (Fuerteventura, Islas Canarias), primeros resultados. Santa Cruz de Tenerife: Organismo Autónomo de museos y Centros.Google Scholar
del Pino Curbelo, M., Rodríguez Rodríguez, A., Buxeda i Garrigós, J., Mangas Viñuela, J., Day, P.M., González Quintero, P., et al. 2016. Las cerámicas aborígenes de Gran Canaria (Islas Canarias) a través del yacimiento de La Cerera: materias primas, tecnología y función. Trabajos de Prehistoria, 73: 90114. https://doi.org/10.3989/tp.2016.12165CrossRefGoogle Scholar
Devièse, T., Stafford, T.W., Waters, M.R., Wathen, C., Comeskey, D., Becerra-Valdivia, L., et al. 2018. Increasing Accuracy for the Radiocarbon Dating of Sites Occupied by the First Americans. Quaternary Science Reviews, 198: 171–80. https://doi.org/10.1016/j.quascirev.2018.08.02CrossRefGoogle Scholar
Efe 2023, 08/16/2023. El ADN pone luz a la colonización de Canarias. Canarias7. https://www.canarias7.es/sociedad/adn-pone-luz-colonizacion-canarias-20230816071203-nt.htmlGoogle Scholar
Erlandson, J.M. & Fitzpatrick, S.M. 2006. Oceans, Islands, and Coasts: Current Perspectives on the Role of the Sea in Human Prehistory. The Journal of Island and Coastal Archaeology, 1: 532. https://doi.org/10.1080/15564890600639504CrossRefGoogle Scholar
Evans, J.D. 1973. Islands as Laboratories for the Study of Culture Process. In: Renfrew, C., ed. The Explanation of Culture Change: Models in Prehistory. London: & Pittsburgh (PA): University of Pittsburgh Press, pp. 517–20.Google Scholar
Farrujia de la Rosa, A.J. & del Arco-Aguilar, M.C. 2004. El tema del primitivo poblamiento humano de Canarias y su inserción dialéctica en la política franquista: de Barradas, José Pérez y Sánchez, Sebastián Jiménez. In: Morales-Padrón, F., ed. XV Coloquio de historia canario-americana, Las Palmas de Gran Canaria: Cabildo Insular de Gran Canaria, pp. 1172–85.Google Scholar
Farrujia de la Rosa, A.J., Pichler, W. & Rodrigue, A. 2009. The Colonization of the Canary Islands and the Libyco-Berber and Latino-Canarian Scripts. Sahara, 20: 83100.Google Scholar
Fitzpatrick, S.M. & Anderson, A. 2008. Islands of Isolation: Archaeology and the Power of Aquatic Perimeters. The Journal of Island and Coastal Archaeology, 3: 416. https://doi.org/10.1080/15564890801983941CrossRefGoogle Scholar
Fregel, R., Ordóñez, A.C., Santana-Cabrera, J., Cabrera, V.M., Velasco-Vazquez, J., Alberto, V., et al. 2019. Mitogenomes Illuminate the Origin and Migration Patterns of the Indigenous People of the Canary Islands. PLoS One, 14: e0209125. https://doi.org/10.1371/journal.pone.0209125CrossRefGoogle ScholarPubMed
Fregel, R., Pestano, J., Arnay, M., Cabrera, V.M., Larruga, J.M. & Gonzalez, A.M. 2009. The Maternal Aborigine Colonization of La Palma (Canary Islands). European Journal of Human Genetics, 17: 1314–24. https://doi.org/10.1038/ejhg.2009.46CrossRefGoogle Scholar
Girotto, C. & Price, H. 2023. Processualism 2.0? AI as Echo of Machine Determinism in Social Archaeology. Paper presented at: European Association of Archaeologists Annual Meeting: Weaving Narratives, Belfast.Google Scholar
González Antón, R. & del Arco Aguilar, M.C. 2007. Los enamorados de la Osa Menor: Navegación y pesca en la protohistoria de Canarias. Santa Cruz de Tenerife: Organismo Autónomo de Museos y Centros.Google Scholar
González Antón, R. & del Arco Aguilar, M.C. 2009. Navegaciones exploratorias en Canarias a finales del II milenio a.c. e inicios del primero. El cordón litoral de La Graciosa (Lanzarote). Canarias Arqueológica: Arqueología/Bioantropología, 17: 980.Google Scholar
González Antón, R., del Arco Aguilar, M.C., Balbín Behrmann, R. & Bueno Ramírez, P. 1998. El Poblamiento de un Archipiélago Atlántico: Canarias en el Proceso Colonizador del primer Milenio A.C. ERES Arqueología/Bioantropología, 8: 43100.Google Scholar
González-Reimers, E., Velasco-Vázquez, J., Arnay de la Rosa, M., Santolaria-Fernández, F. & Galindo-Martín, L. 2001. Paleonutritional Analysis of the Pre-Hispanic Population from Fuerteventura (Canary Islands). The Science of the Total Environment, 264: 215–20. https://doi.org/10.1016/S0048-9697(00)00717-8CrossRefGoogle Scholar
Guerrero Ayuso, V.M. 2001. The Balearic Islands: Prehistoric Colonization of the Furthest Mediterranean Islands from the Mainland. Journal of Mediterranean Archaeology, 14: 136–58. https://doi.org/10.1558/jmea.v14i2.136CrossRefGoogle Scholar
Hagenblad, J. & Morales, J. 2020. An Evolutionary Approach to the History of Barley (Hordeum vulgare) Cultivation in the Canary Islands. African Archaeological Review, 37: 579–95. https://doi.org/10.1007/s10437-020-09415-5CrossRefGoogle Scholar
Henríquez-Valido, P., Morales-Mateos, J., Vidal-Matutano, P., Santana-Cabrera, J. & Rodríguez Rodíguez, A. 2019. Arqueoentomología y arqueobotánica de los espacios de almacenamiento a largo plazo: el granero de Risco Pintado, Temisas (Gran Canaria). Trabajos de Prehistoria, 76: 120–37. https://doi.org/10.3989/tp.2019.12229CrossRefGoogle Scholar
Jiménez Gómez, M.d.l.C. 2003. El mar en la mitología de los bimbaches. Revista Tabona, 12: 137–58.Google Scholar
Jiménez González, J.J. 2013. La Tribu de los Canarii. Arqueología, Antigüedad y Renacimiento. Santa Cruz de Tenerife: Le Canarien.Google Scholar
Kristiansen, K. 2014. Towards a New Paradigm? The Third Science Revolution and its Possible Consequences in Archaeology. Current Swedish Archaeology, 22: 1134. https://doi.org/10.37718/CSA.2014.01CrossRefGoogle Scholar
MacArthur, R.H. & Wilson, E.O. 1967. The Theory of Island Biogeography. Princeton (NJ): Princeton University Press.Google Scholar
Matos Martins, J.M., Mederos Martín, A., Cesário Portela, P.J. & Monge Soares, A.M. 2012. Improving the 14C Dating of Marine Shells from the Canary Islands for Constructing More Reliable and Accurate Chronologies. Radiocarbon, 54: 943–52.CrossRefGoogle Scholar
Mazzola de Los Ríos, A. 2016. Zonas Arqueológicas del Sureste de Gran Canaria: Historia de una Gestión Patrimonial (unpublished dissertation, Facultad de Humanidades, Universidad de La Laguna). Available at: <http://riull.ull.es/xmlui/handle/915/3284>>Google Scholar
Meco, J., Lomoschitz, A., Rodríguez, Á., Ramos, A.J.G., Betancort, J.F. & Coca, J. 2018. Mid and Late Holocene Sea Level Variations in the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 507: 214–25. https://doi.org/10.1016/j.palaeo.2018.07.020CrossRefGoogle Scholar
Meco, J., Muhs, D.R., Fontugne, M., Ramos, A.J.G., Lomoschitz, A. & Patterson, D.A. 2011. Late Pliocene and Quaternary Eurasian Locust Infestations in the Canary Archipelago. Lethaia, 44: 440–54. https://doi.org/10.1111/j.1502-3931.2010.00255.xCrossRefGoogle Scholar
Mederos Martín, A. & Escribano Cobo, G. 1997. Indicios de navegación atlántica en aguas canarias durante época aborigen. Revista de Arqueología, 18: 613.Google Scholar
Mederos Martín, A. & Escribano Cobo, G. 2002. Fenicios, Púnicos y Romanos. Descubrimiento Y Poblamiento de las Islas Canarias. Santa Cruz de Tenerife: Viceconsejería de Cultura y Deportes, Gobierno de Canarias.Google Scholar
Mederos Martín, A. & Escribano Cobo, G. 2005. Los Aborígenes Canarios y la Navegación. Mayurqa, 30: 851–67.Google Scholar
Monge Soares, A.M. 1993. The 14 C Content of Marine Shells: Evidence for Variability in Coastal Upwelling off Portugal During the Holocene (Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere). Vienna: International Atomic Energy Agency.Google Scholar
Morales, J., Rodríguez, A., Alberto, V., Machado, C., Criado, C. & Rando, J.C. 2013. The Impact of Human Activities on the Natural Environment of the Canary Islands (Spain) During the pre-Hispanic Stage (3rd–2nd Century bc to 15th Century ad): An Overview. Environmental Archaeology, 14: 2736. https://doi.org/10.1179/174963109X400655CrossRefGoogle Scholar
Morales Mateos, J. 2006. La explotación de los recursos vegetales en la prehistoria de las Islas Canarias. Una aproximación carpológica a la economía, ecología y sociedad de los habitantes prehispánicos de Gran Canaria (unpublished PhD dissertation, Universidad de Las Palmas de Gran Canaria).Google Scholar
Morales Padrón, F. 1978. Canarias: Crónicas de su conquista. Las Palmas de Gran Canaria: El Museo Canario.Google Scholar
Napolitano, M.F., DiNapoli, R.J. & Stone, J.H. 2021. Introduction. In: Napolitano, M.F., Stone, J.H. & DiNapoli, R.J., eds. The Archaeology of Island Colonization: Global Approaches to Initial Human Settlement. Gainesville (FL): University Press of Florida, pp. 134. https://doi.org/https://doi.org/10.2307/j.ctv1m9×2s3.6Google Scholar
Navarro Mederos, J.F. 1997. Arqueología de las islas Canarias. Espacio Tiempo y Forma. Serie I, Prehistoria y Arqueología, 10: 447–78.Google Scholar
Nogué, S., de Nascimento, L., Fernández-Palacios, J.M., Whittaker, R.J. & Willis, K.J. 2013. The Ancient Forests of La Gomera, Canary Islands, and Their Sensitivity to Environmental Change. Journal of Ecology, 101: 368–77. https://doi.org/10.1111/1365-2745.12051CrossRefGoogle Scholar
O'Connor, S. & Hiscock, P. 2018. The Peopling of Sahul and Near Oceania. In: Cochane, E.E. & Hunt, T.L., eds. The Oxford Handbook of Prehistoric Oceania. Oxford: Oxford University Press, pp. 2647.Google Scholar
Onrubia Pintado, J. 1992. Canaries (îles). Encyclopédie berbère Canaries (îles), 11 [online], [accessed 29 June 2023]. Available at: <https://doi.org/10.4000/encyclopedieberbere.2046>Google Scholar
Onrubia Pintado, J. 2001. Les occupations humaines holocènes du bassin côtier de Tarfaya (Sahara nord-atlantique) et l'origine des Iles Canaries. L'homme maghrébin et son environment depuis 100000 ans (Actes du colloque international de Maghnia 2001), Alger.Google Scholar
Onrubia Pintado, J., Meco, J. & Fontugne, M. 1997. Paleoclimatología y presencia humana Holocena en Fuerteventura. Una Aproximación Geoarqueológica. In: Homenaje a Celso Martín de Guzmán (1946–1994). Las Palmas: Universidad de Las Palmas de Gran Canaria, pp. 363–73.Google Scholar
Ordóñez, A.C., Arnay, M. & Fregel, R. 2021. Genetic Studies Contribution to the Study of Matrilocality in Funerary Practices on the Canary Islands. Canarias Arqueológica: Arqueología-Bioantropología: 235–49.Google Scholar
Ordóñez, A.C., Fregel, R., Trujillo-Mederos, A., Hervella, M., de-la-Rúa, C. & Arnay-de-la-Rosa, M. 2017. Genetic Studies on the Prehispanic Population Buried in Punta Azul Cave (El Hierro, Canary Islands). Journal of Archaeological Science, 78: 2028. https://doi.org/10.1016/j.jas.2016.11.004CrossRefGoogle Scholar
Ortiz-García, C. 2016. ‘Antigüedades guanchinescas’. Comercio y coleccionismo de restos arqueológicos canarios. Culture & History Digital Journal, 5: e017. http://doi.org/10.3989/chdj.2016.017CrossRefGoogle Scholar
Pardo-Gordó, S., González Marrero, M.d.C., Vidal Matutano, P. & Rodríguez-Rodríguez, A. 2022. Dataciones de contextos aborígenes y coloniales de la isla de gran canaria: una propuesta de protocolo de higiene radiocarbónica. Revista de Prehistoria y Arqueología, 22: 217–42. http://dx.doi.org/10.25145/j.tabona.2022.22.11CrossRefGoogle Scholar
Patrick, V.K. 2010. Peopling of the Pacific: A Holistic Anthropological Perspective. Annual Review of Anthropology, 39: 131–48. https://doi.org/10.1146/annurev.anthro.012809.104936CrossRefGoogle Scholar
Pérez González, E. 2007. La dieta de los Benahoritas. Las Estrategias de subsistencia de los antiguos habitantes de la isla de La Palma a través de un análisis historiográfico, arqueológico y bioantropológico. Revista de Estudios generales de la Isla de La Palma, 3: 265–76.Google Scholar
Rainbird, P. 2007. The Archaeology of Islands. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ravazzi, C., Mariani, M., Criado, C., Garozzo, L., Naranjo-Cigala, A., Perez-Torrado, F.J., et al. 2021. The Influence of Natural Fire and Cultural Practices on Island Ecosystems: Insights From a 4800 Year Record from Gran Canaria, Canary Islands. Journal of Biogeography, 48: 276–90. https://doi.org/10.1111/jbi.13995CrossRefGoogle Scholar
Reinhard, K.J., Martín-Oval, M., del-Arco-Aguilar, M., Rodríguez-Maffiotte-Martín, C. & del-Arco-Aguilar, M.C. 2021. Analysis of Mummified Intestines Samples From the El Chorrillo (Canary Islands, Spain): The Recovery of Macroscopic and Microscopic Evidence of Dietary Practices. Canarias Arqueológica: Arqueología-Bioantropología: 483–94.Google Scholar
Ribeiro, A. 2021. Vagueness, Identity, and the Dangers of a General Metaphysics in Archaeology. Open Philosophy, 4: 2035. https://doi.org/10.1515/opphil-2020-0149CrossRefGoogle Scholar
Ribeiro, A. 2022. Methodological Anarchism Against Interdisciplinary Archaeology. Forum Kritische Archäologie, 11: 93105.Google Scholar
Roberts, P., Fernandes, R., Craig, O.E., Larsen, T., Lucquin, A., Swift, J., et al. 2018. Calling all Archaeologists: Guidelines for Terminology, Methodology, Data Handling, and Reporting When Undertaking and Reviewing Stable Isotope Applications in Archaeology. Rapid Communications in Mass Spectrometry, 32: 361–72. https://doi.org/10.1002/rcm.8044CrossRefGoogle ScholarPubMed
Rodríguez-Martín, C. & Martín-Oval, M. 2009. Guanches: Una Historia Bioantropológica. Santa Cruz de Tenerife: Organismo Autónomo de Museos y Centros.Google Scholar
Rodríguez-Varela, R., Günther, T., Krzewińska, M., Storå, J., Gillingwater, T.H., MacCallum, M., et al. 2017. Genomic Analyses of Pre-European Conquest Human Remains from the Canary Islands Reveal Close Affinity to Modern North Africans. Current Biology, 27: 1677–79. https://doi.org/10.1016/j.cub.2017.09.059CrossRefGoogle ScholarPubMed
Sahlins, M.D. 1955. Esoteric Efflorescence in Easter Island. American Anthropologist, 57: 1045–52. https://doi.org/10.1525/aa.1955.57.5.02a00150CrossRefGoogle Scholar
Santana Santana, A. 2002. El conocimiento geográfico de la costa Noroccidental de África en Plinio: La posición de las Canarias (Vol. 88). Hildesheim: Olms.Google Scholar
Serrano, J.G., Ordóñez, A.C., Santana, J., Sánchez-Cañadillas, E., Arnay, M., Rodríguez-Rodríguez, A., et al. 2023. The Genomic History of the Indigenous People of the Canary Islands. Nature Communications, 14: 4641. https://doi.org/10.1038/s41467-023-40198-wCrossRefGoogle ScholarPubMed
Shanks, M. & McGuire, R.H. 1996. The Craft of Archaeology. American Antiquity, 61: 7588. https://doi.org/10.1017/S0002731600050046CrossRefGoogle Scholar
Shipley, G. 2020. Pseudo-Skylax's Periplous: The Circumnavigation of the Inhabited World: Text, Translation and Commentary, Liverpool: Liverpool University Press.CrossRefGoogle Scholar
Simões, L.G., Günther, T., Martínez-Sánchez, R.M., Vera-Rodríguez, J.C., Iriarte, E., Rodríguez-Varela, R., et al. 2023. Northwest African Neolithic Initiated by Migrants from Iberia and Levant. Nature, 618: 550–56.CrossRefGoogle ScholarPubMed
Soares, A.M.M. & Dias, J.M.A. 2007. Reservoir Effect of Coastal Waters off Western and Northwestern Galicia. Radiocarbon, 49: 925–36. https://doi.org/10.1017/S003382220004279XCrossRefGoogle Scholar
Stieglitz, R.R. 1984. Long-distance Seafaring in the Ancient Near East. The Biblical Archaeologist, 47: 134–42. https://doi.org/10.2307/3209914CrossRefGoogle Scholar
Tejera Gaspar, A., Chávez Álvarez, M.E. & Montesdeoca, M. 2006. Canarias y el África Antigua. La Laguna: Centro de la Cultura Popular Canaria.Google Scholar
Terrell, J.E. 1976. Island Biogeography and Man in Melanesia. Archaeology & Physical Anthropology in Oceania, 11: 117.Google Scholar
Terrell, J.E. 2020. Metaphor and Theory in Island Archaeology. The Journal of Island and Coastal Archaeology [online]: 111. https://doi.org/10.1080/15564894.2020.1830892Google Scholar
Terrell, J.E., Kelly, K.M. & Rainbird, P. 2001. Foregone Conclusions? In Search of Papuans and Austronesians. Current Anthropology, 42: 97124. https://doi.org/10.1086/318436CrossRefGoogle Scholar
Velasco-Vázquez, J. 1999. Canarios. Economía y dieta de una sociedad prehistóricas. Las Palmas: Cabildo de Gran Canaria.Google Scholar
Velasco-Vázquez, J., Alberto-Barroso, V.N., Delgado-Darias, T., Moreno-Benítez, M., Lécuyer, C. & Richardin, P. 2020. Poblamiento, colonización y primera historia de Canarias: El C14 como paradigma. Anuario de Estudios Atlánticos, 66: 124.Google Scholar
Waters, M.R., Stafford, T.W. & Carlson, D.L. 2020. The Age of Clovis: 13,050 to 12,750 cal yr bp. Science Advances, 6: eaaz0455. https://doi.org/10.1126/sciadv.aaz0455CrossRefGoogle Scholar
Westaway, M.C. 2019. The First Hominin Fleet. Nature Ecology & Evolution, 3: 9991000. https://doi.org/10.1038/s41559-019-0928-9CrossRefGoogle ScholarPubMed
Figure 0

Figure 1. Location of the Canary Islands and surrounding territories within the temporal context of c. 270 bc. Major Punic—later Roman—urban centres are marked with their Latin names. Given our lack of knowledge on the exact routes that ancient settlers used to reach the archipelago, the paths drawn are not intended to represent literal routes proposed by other authors; instead, they are provided as a guide to illustrate differences in peopling origins within the Maghreb region.

Figure 1

Figure 2. The Canary Islands with sites mentioned in the text noted.

Supplementary material: File

Cuello del Pozo supplementary material

Cuello del Pozo supplementary material
Download Cuello del Pozo supplementary material(File)
File 37.9 KB