In the small diffusion limit ε→0, metastable dynamics is studied for the generalized Burgers problem
formula here
Here u=u(x, t) and f(u) is smooth, convex, and satisfies f(0)=f′(0)=0. The choice f(u)=u2/2 has been shown previously to arise in connection with the physical problem of upward flame-front propagation in a vertical channel in a particular parameter regime. In this context, the shape y=y(x, t) of the flame-front interface satisfies u=−yx. For this problem, it is shown that the principal eigenvalue associated with the linearization around an equilibrium solution corresponding to a parabolic-shaped flame-front interface is exponentially small. This exponentially small eigenvalue then leads to a metastable behaviour for the time-dependent problem. This behaviour is studied quantitatively by deriving an asymptotic ordinary differential equation characterizing the slow motion of the tip location of a parabolic-shaped interface. Similar metastability results are obtained for more general f(u). These asymptotic results are shown to compare very favourably with full numerical computations.