Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:39:17.794Z Has data issue: false hasContentIssue false

Topological stability criteria for networking dynamical systems with Hermitian Jacobian

Published online by Cambridge University Press:  02 November 2016

A. L. DO
Affiliation:
Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany email: ly@pks.mpg.de
S. BOCCALETTI
Affiliation:
Institute of Complex Systems of the CNR, Florence, Italy email: stefano.boccaletti@gmail.com The Italian Embassy in Israel, Tel Aviv, Israel email: jeremias.epperlein@tu-dresden.de
J. EPPERLEIN
Affiliation:
Dresden University of Technology, Institute of Analysis, Dresden, Germany email: stefan.siegmund@tu-dresden.de
S. SIEGMUND
Affiliation:
Dresden University of Technology, Institute of Analysis, Dresden, Germany email: stefan.siegmund@tu-dresden.de
T. GROSS
Affiliation:
University of Bristol, Merchant Venturers School of Engineering, Bristol, UK email: thilo2gross@gmail.com

Abstract

The central theme of complex systems research is to understand the emergent macroscopic properties of a system from the interplay of its microscopic constituents. The emergence of macroscopic properties is often intimately related to the structure of the microscopic interactions. Here, we present an analytical approach for deriving necessary conditions that an interaction network has to obey in order to support a given type of macroscopic behaviour. The approach is based on a graphical notation, which allows rewriting Jacobi's signature criterion in an interpretable form and which can be applied to many systems of symmetrically coupled units. The derived conditions pertain to structures on all scales, ranging from individual nodes to the interaction network as a whole. For the purpose of illustration, we consider the example of synchronization, specifically the (heterogeneous) Kuramoto model and an adaptive variant. The results complete and extend the previous analysis of Do et al. (2012Phys. Rev. Lett.108, 194102).

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Acebron, J. A., Bonilla, L. L., Perez, Vicente, C. J., Ritort, F. & Spigler, R. (2005) The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137.CrossRefGoogle Scholar
[2] Adhikari, M. R. & Adhikari, A. (2005) Textbook of Linear Algebra: Introduction to Modern Algebra, Allied Publishers, Mumbai.Google Scholar
[3] Almendral, J. A., Leyva, I., Li, D., Sendiña-Nadal, I., Havlin, S. & Boccaletti, S. (2010) Dynamics of overlapping structures in modular networks. Phys. Rev. E 82, 016115.Google Scholar
[4] Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. (2008) Synchronization in complex networks. Phys. Rep. 469, 93.Google Scholar
[5] Atay, F. M., Jost, J. & Wende, A. (2004) Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92, 144101.Google Scholar
[6] Albert, R. & Barabási, A. L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47.Google Scholar
[7] Beckers, J. M. (1992) Analytical linear numerical stability conditions for the anisotropic three-dimensional advection-diffusion equation. SIAM J. Numer. Anal. 29, 701.Google Scholar
[8] Boccaletti, S. (2008) The Synchronized Dynamics of Complex Systems, Elsevier, Amsterdam.Google Scholar
[9] Cai, J., Wu, X. & Chen, S. (2007) Chaos synchronization criteria and costs of sinusoidally coupled horizontal platform systems. Math. Probl. Eng. 2007, 86852.Google Scholar
[10] Chavez, M., Hwang, D. U., Amann, A., Hentschel, H. G. E. & Boccaletti, S. (2005) Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701.Google Scholar
[11] Deffuant, G. (2006) Comparing extremism propagation patterns in continuous opinion models. JASS 9 (3), 8.Google Scholar
[12] Do, A. L., Rudolf, L. & Gross, T. (2010) Patterns of cooperation: fairness and coordination in networks of interacting agents. New J. Phys. 12, 063023.Google Scholar
[13] Do, A. L., Boccaletti, S. & Gross, T. (2012) Graphical notation reveals topological stability criteria for collective dynamics in complex networks. Phys. Rev. Lett 108, 194102.Google Scholar
[14] Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275.Google Scholar
[15] Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T. M. (2008) Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. A 336(1868), 1297.Google Scholar
[16] Ermentrout, G. B. (1992) Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665; Izhikevich, E. M. (1999) Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Trans. Neural Netw. 10, 508.Google Scholar
[17] Eskin, G., Ralston, J. & Trubowitz, E. (1984) On isospectral periodic potentials in $\mathbb{R}$ n .II. Comm. Pure Appl. Math. 37, 715.Google Scholar
[18] Fortunato, S. (2010) Community detection in graphs. Phys. Rep. 486, 75.Google Scholar
[19] Gross, T. & Blasius, B. (2008) Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259; Gross, T. and Sayama, H. (Eds.) (2009) Adaptive Networks: Theory, Models and Applications, Springer, Heidelberg.Google Scholar
[20] Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. (2009) Generalized models reveal stabilizing factors in food webs. Science 325, 747.Google Scholar
[21] Ito, J. & Kaneko, K. (2001) Spontaneous structure formation in a network of chaotic units with variable connection strengths Phys. Rev. Lett. 88, 028701.Google Scholar
[22] Kawamura, Y., Nakao, H., Arai, K., Kori, H. & Kuramoto, Y. (2010) Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case Chaos 20, 043110.Google Scholar
[23] Kirchhoff, G. (1847) Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497.Google Scholar
[24] Kevrekidis, I. G., Gear, C. W. & Hummer, G. (2004) Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346.Google Scholar
[25] Kuramoto, Y. (1975) Lecture Notes in Physics, Vol. 39, Springer, New York.Google Scholar
[26] Laradji, M., Shi, A. C., Desai, R. C. & Noolandi, J. (1997) Stability of ordered phases in diblock copolymer melts. Phys. Rev. Lett. 78, 2577.Google Scholar
[27] Leibold, M. A. et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601.Google Scholar
[28] Li, M. Y. & Shuai, Z. (2010) Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248, 1.Google Scholar
[29] Liao, X. & Yu, P. (2008) Absolute Stability of Nonlinear Control Systems, Springer, Netherlands.Google Scholar
[30] Lodato, I., Boccaletti, S. & Latora, V. (2007) Synchronization properties of network motifs. EPL 78, 28001.Google Scholar
[31] Mirollo, R. E. & Strogatz, S. H. (2005) The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249.Google Scholar
[32] Mori, F. (2010) Necessary condition for frequency synchronization in network structures. Phys. Rev. Lett. 104, 108701.Google Scholar
[33] Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev. 45, 167.Google Scholar
[34] Newman, M. E. J., Barabási, A. L. & Watts, D. J. (2006) The Structure and Dynamics of Networks, Princeton University Press, Princeton, NJ.Google Scholar
[35] Nishikawa, T. & Motter, A. E. (2006) Synchronization is optimal in non-diagonizable networks. Phys. Rev. E 73, 065106.Google Scholar
[36] Nishikawa, T. & Motter, A. E. (2010) Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. PNAS 107, 10342.Google Scholar
[37] Pecora, L. M. & Carroll, T. L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109.Google Scholar
[38] Pikovsky, A., Rosenblum, M. & Kurths, J. (2001) Synchronization, Cambridge University Press, Cambridge.Google Scholar
[39] Schnakenberg, J. (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571.Google Scholar
[40] Sendiña-Nadal, I., Buldú, J. M., Leyva, I. & Boccaletti, S. (2008) Phase Locking Induces Scale-Free Topologies in Networks of Coupled Oscillators. PLoS ONE 3, e2644.Google Scholar
[41] Shirokov, A. M., Smirnova, N. A. & Smirnov, Y. F. (1998) Parameter symmetry of the interacting boson model. Phys. Lett. B 434, 237.Google Scholar
[42] Soldatova, E. D. (2006) Stability conditions for the basic thermodynamic potentials and the substantiation of the phase diagram J. Mol. Liq. 127, 99.Google Scholar
[43] Valladares, D. L., Boccaletti, S., Feudel, F. & Kurths, J. (2002) Collective phase locked states in a chain of coupled chaotic oscillators. Phys. Rev. E 65, 055208.Google Scholar
[44] Wu, C. W. (2007) Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore.Google Scholar
[45] Zhang, F. (2011) Matrix Theory: Basic Results and Techniques, Springer, New York.Google Scholar
[46] Zhou, C. & Kurths, J. (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett. 96, 164102.Google Scholar