Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:39:36.786Z Has data issue: false hasContentIssue false

On the stochastic resonance phenomenon in parametrically excited systems

Published online by Cambridge University Press:  26 September 2018

VLADISLAV SOROKIN
Affiliation:
Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand email: v.sorokin@auckland.ac.nz
ILIYA BLEKHMAN
Affiliation:
Mekhanobr-Tekhnika Research & Engineering Corp., St. Petersburg, Russia email: iliya.i.blekhman@gmail.com Institute of Problems in Mechanical Engineering, RAS, St. Petersburg, Russia

Abstract

The stochastic resonance phenomenon implies “positive” changing of a system behaviour when noise is added to the system. The phenomenon has found numerous applications in physics, neuroscience, biology, medicine, mechanics and other fields. The present paper concerns this phenomenon for parametrically excited stochastic systems, i.e. systems that feature deterministic input signals that affect their parameters, e.g. stiffness, damping or mass properties. Parametrically excited systems are now widely used for signal sensing, filtering and amplification, particularly in micro- and nanoscale applications. And noise and uncertainty can be essential for systems at this scale. Thus, these systems potentially can exhibit stochastic resonance. In the present paper, we use a “deterministic” approach to describe the stochastic resonance phenomenon that implies replacing noise by deterministic high-frequency excitations. By means of the approach, we show that stochastic resonance can occur for parametrically excited systems and determine the corresponding resonance conditions.

Type
Papers
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work is carried out with financial support from the Russian Science Foundation, Grant 17-79-30056 (project “REC Mekhanobr-Tekhnika”).

References

Ariaratnam, S. T. & Tam, D. S. F. (1976) Parametric random excitation of a damped Mathieu oscillator. J. Appl. Math. Mech. 56, 449452.Google Scholar
Arnold, L., Papanicolaou, G. & Wihstutz, V. (1986) Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46(3), 427450.CrossRefGoogle Scholar
Baltanas, J., López, L., Blekhman, I. I., Landa, P. S., Zaikin, A., Kurths, J., & Sanjuán, M. A. (2003) Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Phys. Rev. E 67, 066119.CrossRefGoogle ScholarPubMed
Barzykin, A. V., Seki, K. & Shibata, F. (1998) Periodically driven linear system with multiplicative colored noise. Phys. Rev. E 57, 6555.CrossRefGoogle Scholar
Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. (1983) A theory of stochastic resonance in climatic change. SIAM J. Appl. Math. 43(3), 565578.CrossRefGoogle Scholar
Benzi, R., Sutera, A. & Vulpiani, A. (1981) The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14(11), L453.CrossRefGoogle Scholar
Berdichevsky, V. & Gitterman, M. (1999) Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60(2), 14941499.CrossRefGoogle ScholarPubMed
Bleich, H. (1956) Effect of vibrations on the motion of small gas bubbles in a liquid. J. Am. Rocket Soc. 26(11), 958964.Google Scholar
Blekhman, I. & Kremer, E. (2017) Effect of high-frequency oscillations on low-frequency vibrations in non-linear systems. In: International Conference on Engineering Vibration, Sofia, Bulgaria, p. 1.Google Scholar
Blekhman, I. I. (2000) Vibrational Mechanics. Nonlinear Dynamic Effects, General Approach, Applications, World Scientific, Singapore, p. 509.CrossRefGoogle Scholar
Blekhman, I. I. (2002) Selected Topics in Vibrational Mechanics, World Scientific, New Jersey, p. 409.Google Scholar
Blekhman, I. I. (2012) Oscillatory strobodynamics – a new area in nonlinear oscillations theory, nonlinear dynamics and cybernetical physics. Cybernetics and Physics 1, 510.Google Scholar
Blekhman, I. I. & Landa, P. S. (2004) Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. Int. J. Non-Linear Mech. 39, 421426.CrossRefGoogle Scholar
Blekhman, I. I. & Sorokin, V. S. (2010) On the separation of fast and slow motions in mechanical systems with high-frequency modulation of the dissipation coefficient. J. Sound Vib. 329(23), 49364949.CrossRefGoogle Scholar
Blekhman, I. I. & Sorokin, V. S. (2016) Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples. Nonlinear Dyn. 83, 21252141.CrossRefGoogle Scholar
Bogoliubov, N. & Mitropolskii, J. (1961) Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, p. 537.Google Scholar
Chapeau-Blondeau, F. & Rousseau, D. (2002) Noise improvements in stochastic resonance: from signal amplification to optimal detection. Fluct. Noise Lett. 2, L221L233.CrossRefGoogle Scholar
Cole, J. D. & Kevorkian, J. (1963) Uniformly valid asymptotic approximations for certain nonlinear differential equations. In: LaSalle, J. P. and Lefschetz, S. (editors), Nonlinear Differential Equations and Nonlinear Mechanics, Academic, New York, pp. 113120.CrossRefGoogle Scholar
Dostal, L., Korner, K., Kreuzer, E. & Yurchenko, D. (2018) Pendulum energy converter excited by random loads. ZAMM J. Appl. Math. Mech. 98(3), 349366.CrossRefGoogle Scholar
Dostal, L., Kreuzer, E. & Sri Namachchivaya, N. (2012) Non-standard stochastic averaging of large amplitude ship rolling in random seas. Proc. R. Soc. A 468(2148), 41464173.CrossRefGoogle Scholar
Floris, C. (2012) Stochastic stability of damped Mathieu oscillator parametrically excited by a Gaussian noise. Math. Probl. Eng. 2012, 1.CrossRefGoogle Scholar
Gammaitoni, L., Hanggi, P., Jung, P. & Marchesoni, F. (1998) Stochastic resonance. Rev. Mod. Phys. 70(1), 223287.CrossRefGoogle Scholar
Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. (2009) Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69(1), 13.CrossRefGoogle Scholar
Gitterman, M. (2003) Harmonic oscillator with multiplicative noise: nonmonotonic dependence on the strength and the rate of dichotomous noise. Phys. Rev. E 67, 057103.CrossRefGoogle ScholarPubMed
Gitterman, M. (2004) Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101.CrossRefGoogle ScholarPubMed
Kapitza, P. L. (1951) Pendulum with a vibrating suspension. Usp. Fiz. Nauk. 44, 720.CrossRefGoogle Scholar
Kevorkian, J. & Cole, J. D. (1996) Multiple Scale and Singular Perturbation Methods, Springer, New York, p. 634.CrossRefGoogle Scholar
Krylov, S., Harari, I. & Cohen, Y. (2005) Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15(6), 11881204.CrossRefGoogle Scholar
Landa, P. S. & McClintock, P. (2000) Vibrational resonance. J. Phys. A: Math. Gen. 33, L433L438.CrossRefGoogle Scholar
Lingala, N., Namachchivaya, N. S. & Pavlyukevich, I. (2017) Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone. Nonlinearity 30(4), 1376.CrossRefGoogle Scholar
McDonnell, M. & Abbot, D. (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5(5), e1000348.CrossRefGoogle ScholarPubMed
McInnes, C. R., Gorman, D. G. & Cartmell, M. P. (2008) Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655662.CrossRefGoogle Scholar
Nayfeh, A. & Mook, D. (1979) Nonlinear Oscillations, Wiley-Interscience, New York, p. 720.Google Scholar
Rhoads, J., Shaw, S. & Turner, K. (2010) Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001.CrossRefGoogle Scholar
Sanders, J. & Verhulst, F. (1985) Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, Berlin, p. 249.CrossRefGoogle Scholar
Seshia, A., Palaniapan, M., Roessig, T. A., Howe, R. T., Gooch, R. W., Schimert, T. R., & Montague, S. (2002) A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784793.CrossRefGoogle Scholar
Sorokin, V. S., Blekhman, I. I. & Vasilkov, V. B. (2012) Motion of a gas bubble in fluid under vibration. Nonlinear Dyn. 67(1), 147158.CrossRefGoogle Scholar
Sri Namachchivaya, N. & Sowers, R. B. (2001) Unified approach for noisy nonlinear Mathieu-type systems. Stoch. Dyn. 1, 405450.CrossRefGoogle Scholar
Stephenson, A. (1908) On induced stability. Philos. Mag. 15(86), 233236.CrossRefGoogle Scholar
Thomsen, J. (2003) Vibrations and Stability: Advanced Theory, Analysis and Tools, Springer, Berlin, p. 404.CrossRefGoogle Scholar
Wedig, W. V. (1990) Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct. Saf. 8(1-4), 1325.CrossRefGoogle Scholar
Wiesenfeld, K. & Moss, F. (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 3336.CrossRefGoogle ScholarPubMed
Yurchenko, D., Naess, A. & Alevras, P. (2013) Pendulum’s rotational motion governed by a stochastic Mathieu equation. Probab. Eng. Mech. 31, 1218.CrossRefGoogle Scholar
Zheng, R., Nakano, K., Hu, H., Su, D. & Cartmell, M. P. (2014) An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333, 25682587.CrossRefGoogle Scholar