Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:04:30.990Z Has data issue: false hasContentIssue false

Mean-field optimal control as Gamma-limit of finite agent controls

Published online by Cambridge University Press:  08 March 2019

M. FORNASIER
Affiliation:
Department of Mathematics, TU München, Boltzmannstr. 3, Garching bei München D-85748, Germany email: massimo.fornasier@ma.tum.de
S. LISINI
Affiliation:
Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy email: stefano.lisini@unipv.it; giuseppe.savare@unipv.it
C. ORRIERI
Affiliation:
Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy email: orrieri@mat.uniroma1.it
G. SAVARÉ*
Affiliation:
Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy email: stefano.lisini@unipv.it; giuseppe.savare@unipv.it

Abstract

This paper focuses on the role of a government of a large population of interacting agents as a meanfield optimal control problem derived from deterministic finite agent dynamics. The control problems are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the dynamics of the probability distribution of the agent population. We derive existence of optimal controls in a measure-theoretical setting as natural limits of finite agent optimal controls without any assumption on the regularity of control competitors. In particular, we prove the consistency of mean-field optimal controls with corresponding underlying finite agent ones. The results follow from a Γ -convergence argument constructed over the mean-field limit, which stems from leveraging the superposition principle.

Type
Papers
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Massimo Fornasier acknowledges the financial support provided by the ERC-Starting Grant ‘High-Dimensional Sparse Optimal Control’ (HDSPCONTR) and the DFG-Project FO 767/7-1 ‘Identification of Energies from the Observation of Evolutions’. Giuseppe Savaré acknowledges the financial support provided by Cariplo foundation and Regione Lombardia via project ‘Variational evolution problems and optimal transport’. Carlo Orrieri acknowledges the financial support provided by PRIN 20155PAWZB ‘Large Scale Random Structures’.

References

Albi, G., Bongini, M., Cristiani, E. & Kalise, D. (2016) Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 16831710.CrossRefGoogle Scholar
Albi, G., Choi, Y.-P., Fornasier, M. & Kalise, D. (2017) Mean field control hierarchy. Appl. Math. Optim. 76(1), 93135.CrossRefGoogle Scholar
Ambrosio, L. & Crippa, G. (2014) Continuity equations and ODE flows with non-smooth velocity. Proc. Roy. Soc. Edinburgh Sect. A 144(6), 11911244.CrossRefGoogle Scholar
Ambrosio, L., Fusco, N. & Pallara, D. (2000) Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.Google Scholar
Ambrosio, L., Gigli, N. & Savaré, G. (2008) Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel.Google Scholar
Andersson, D. & Djehiche, B. (2011) A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63(3), 341356.CrossRefGoogle Scholar
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Nat. Acad. Sci. 105(4), 12321237.CrossRefGoogle ScholarPubMed
Bayraktar, E., Cosso, A. & Pham, H. (2018) Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics. Trans. Amer. Math. Soc. 370(3), 21152160.CrossRefGoogle Scholar
Bensoussan, A., Frehse, J. & Yam, P. (2013) Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics, Springer, New York.CrossRefGoogle Scholar
Bongini, M. & Fornasier, M. (2014) Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterog. Media 9(1), 131.CrossRefGoogle Scholar
Bongini, M. & Fornasier, M. (2017) Sparse control of multiagent systems. In: Active Particles, Vol. 1, Advances in Theory, Models, and Applications. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, pp. 173228.Google Scholar
Bongini, M., Fornasier, M. & Kalise, D. (2015) (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Discrete Contin. Dyn. Syst. 35(9), 40714094.CrossRefGoogle Scholar
Bongini, M., Fornasier, M., Rossi, F. & Solombrino, F. (2017) Mean-field Pontryagin maximum principle. J. Optim. Theory Appl. 175(1), 138.CrossRefGoogle Scholar
Buckdahn, R., Djehiche, B. & Li, J. (2011) A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64(2), 197216.CrossRefGoogle Scholar
Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G. & bonabeau, E. (2003) Self-organization in Biological Systems. Princeton Studies in Complexity, Princeton University Press, Princeton, NJ. Reprint of the 2001 original.Google Scholar
Caponigro, M., Fornasier, M., Piccoli, B. & Trélat, E. (2013) Sparse stabilization and optimal control of the Cucker-Smale model. Math. Control Relat. Fields 3(4), 447466.CrossRefGoogle Scholar
Carmona, R., Delarue, F. & Lachapelle, A. (2013) Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131166.CrossRefGoogle Scholar
Carrillo, J. A., Choi, Y.-P. & Hauray, M. (2014) The derivation of swarming models: meanfield limit and Wasserstein distances. In: Collective Dynamics from Bacteria to Crowds. CISM Courses and Lectures, Vol. 553, Springer, Vienna, pp. 146.Google Scholar
Carrillo, J. A., Choi, Y.-P. & Perez, S. P. (2017) A review on attractive-repulsive hydrodynamics for consensus in collective behavior. In: Active Particles, Vol. 1, Advances in Theory, Models, and Applications. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, pp. 259298.Google Scholar
Carrillo, J. A., D’orsogna, M. R. & Panferov, V. (2009) Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2(2), 363378.CrossRefGoogle Scholar
Carrillo, J. A., Fornasier, M., Toscani, G. & Vecil, F. (2010) Particle, kinetic, and hydrodynamic models of swarming. In: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, pp. 297336.CrossRefGoogle Scholar
Choi, Y.-P., Ha, S.-Y. & Li, Z. (2017) Emergent dynamics of the Cucker-Smale flocking model and its variants. In: Active Particles, Vol. 1, Advances in Theory, Models, and Applications. Modeling and Simulation in Science, Birkhäuser/Springer, Cham, pp. 299331.Google Scholar
Chuang, Y.-L., D’orsogna, M. R., Marthaler, D., Bertozzi, A. L. & Chayes, L. S. (2007) State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D 232(1), 3347.CrossRefGoogle Scholar
Chuang, Y.-L., Huang, Y. R., D’orsogna, M. R. & Bertozzi, A. L. (2007) Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. In: 2007 IEEE International Conference on Robotics and Automation, IEEE, pp. 22922299.CrossRefGoogle Scholar
Couzin, I. D. & Franks, N. R. (2003) Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. London, B: Biol. Sci. 270(1511), 139146.CrossRefGoogle ScholarPubMed
Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. (2005) Effective leadership and decisionmaking in animal groups on the move. Nature 433(7025), 513.CrossRefGoogle ScholarPubMed
Cristiani, E., Piccoli, B. & Tosin, A. (2010) Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, pp. 337364.CrossRefGoogle Scholar
Cristiani, E., Piccoli, B. & Tosin, A. (2011) Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9(1), 155182.CrossRefGoogle Scholar
Cucker, F. & Dong, J.-G. (2011) A general collision-avoiding flocking framework. IEEE Trans. Automat. Control 56(5), 11241129.CrossRefGoogle Scholar
Cucker, F. & Mordecki, E. (2008) Flocking in noisy environments. J. Math. Pures Appl. 89(3), 278296.CrossRefGoogle Scholar
Cucker, F. & Smale, S. (2007) Emergent behavior in flocks. IEEE Trans. Automat. Control 52(5), 852862.CrossRefGoogle Scholar
Cucker, F. & Smale, S. (2007) On the mathematics of emergence. Jpn. J. Math. 2(1), 197227.CrossRefGoogle Scholar
Cucker, F., Smale, S. & Zhou, D.-X. (2004) Modeling language evolution. Found. Comput. Math. 4(3), 315343.CrossRefGoogle Scholar
Dal Maso, G. (1993) An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, Vol. 8, Birkhäuser Boston, Inc., Boston, MA.CrossRefGoogle Scholar
Evans, L. C. & Gariepy, R. F. (2015) Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, CRC Press, Boca Raton, FL, revised edition.CrossRefGoogle Scholar
Fleming, W. H. (1977) Generalized solutions in optimal stochastic control. Differential games and control theory, II (Proc. 2nd Conf., Univ. Rhode Island, Kingston, R.I., 1976), pp. 147165. Lecture Notes in Pure and Appl. Math., 30. Dekker, New York.Google Scholar
Florentin, J. J. (1961) Optimal control of continuous time, Markov, stochastic systems. J. Electron. Control 10, 473488.CrossRefGoogle Scholar
Fornasier, M., Piccoli, B. & Rossi, F. (2014) Mean-field sparse optimal control. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2028), 20130400.CrossRefGoogle ScholarPubMed
Fornasier, M. & Solombrino, F. (2014) Mean-field optimal control. ESAIM Control Optim. Calc. Var. 20(4), 11231152.CrossRefGoogle Scholar
Grégoire, G. & Chaté, H. (2004) Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702.CrossRefGoogle ScholarPubMed
Jadbabaie, A., Lin, J. & Stephen Morse, A. (2003) Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules” [IEEE Trans. Automat. Control 48(6), 988–1001; MR 1986266]. IEEE Trans. Automat. Control 48(9), 1675.CrossRefGoogle Scholar
Ke, J., Minett, J. W., Au, C.-P. & Wang, W. S.-Y. (2002) Self-organization and selection in the emergence of vocabulary. Complexity 7(3), 4154.CrossRefGoogle Scholar
Keller, E. F. & Segel, L. A. (1970) Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399415.CrossRefGoogle ScholarPubMed
Koch, A. L.&White, D. (1998) The social lifestyle of myxobacteria. Bioessays 20(12), 10301038.3.0.CO;2-7>CrossRefGoogle Scholar
Kushner, H. J. (1962) Optimal stochastic control. IRE Trans. Autom. Control 7(5), 120122.CrossRefGoogle Scholar
Lacker, D. (2017) Limit theory for controlled McKean-Vlasov dynamics. SIAM J. Control Optim. 55(3), 16411672.CrossRefGoogle Scholar
Laurière, M. & Pironneau, O. (2014) Dynamic programming for mean-field type control. C. R. Math. Acad. Sci. Paris 352(9), 707713.CrossRefGoogle Scholar
Leonard, N. E. & Fiorelli, E. (2001) Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, Vol. 3. IEEE, pp. 29682973.Google Scholar
Niwa, H.-S. (1994) Self-organizing dynamic model of fish schooling. J. Theor. Biol. 171(2), 123136.CrossRefGoogle Scholar
Orrieri, C. (2018) Large deviations for interacting particle systems: joint mean-field and smallnoise limit. arXiv preprint arXiv:1810.12636.Google Scholar
Parrish, J. K. & Edelstein-Keshet, L. (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284(5411), 99101.CrossRefGoogle ScholarPubMed
Parrish, J. K., Viscido, S. V. & Grunbaum, D. (2002) Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296305.CrossRefGoogle ScholarPubMed
Perea, L., Elosegui, P., & Gómez, G. Extension of the Cucker-Smale control law to space flight formations. J. Guidance Control Dyn. 32(2), 527537, 2009.CrossRefGoogle Scholar
Perthame, B. (2007) Transport Equations in Biology. Frontiers in Mathematics, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
Pham, H. & Wei, X. (2018) Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM Control Optim. Calc. Var., 24(1), 437461.CrossRefGoogle Scholar
Romey, W. L. (1996) Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Modell. 92(1), 6577.CrossRefGoogle Scholar
Rossi, R. & Savaré, G. (2003) Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2(2), 395431.Google Scholar
Short, M. B., D’orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. & Chayes, L. B. (2008) A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18(suppl.), 12491267.CrossRefGoogle Scholar
Sugawara, K. & Sano, M. (1997) Cooperative acceleration of task performance: foraging behavior of interacting multi-robots system. Phys. D Nonlinear Phenom. 100(3–4), 343354.CrossRefGoogle Scholar
Toner, J. & Tu, Y. (1995) Long-range order in a two-dimensional dynamical xy model: how birds fly together. Phys. Rev. Lett. 75(23), 4326.CrossRefGoogle Scholar
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. (1995) Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 12261229.CrossRefGoogle Scholar
Vicsek, T. & Zafeiris, A. (2012) Collective motion. Phys. Rep. 517(3–4), 71140.CrossRefGoogle Scholar
Visintin, A. (1984) Strong convergence results related to strict convexity. Comm. Partial Differ. Equ. 9(5), 439466.CrossRefGoogle Scholar
Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., Maini, P. K. & Sumpter, D. J. T. (2009) Inherent noise can facilitate coherence in collective swarm motion. Proc. Nat. Acad. Sci. 106(14), 54645469.CrossRefGoogle ScholarPubMed