Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:06:09.206Z Has data issue: false hasContentIssue false

Invasion moving boundary problem for a biofilm reactor model

Published online by Cambridge University Press:  05 April 2018

B. D'ACUNTO
Affiliation:
Department of Mathematics and Applications, University of Naples “Federico II”, Complesso Monte Sant'Angelo, 80124 Naples, Italy emails: dacunto@unina.it, luigi.frunzo@unina.it, vincenzo.luongo@unina.it, mariarosaria.mattei@unina.it
L. FRUNZO
Affiliation:
Department of Mathematics and Applications, University of Naples “Federico II”, Complesso Monte Sant'Angelo, 80124 Naples, Italy emails: dacunto@unina.it, luigi.frunzo@unina.it, vincenzo.luongo@unina.it, mariarosaria.mattei@unina.it
V. LUONGO
Affiliation:
Department of Mathematics and Applications, University of Naples “Federico II”, Complesso Monte Sant'Angelo, 80124 Naples, Italy emails: dacunto@unina.it, luigi.frunzo@unina.it, vincenzo.luongo@unina.it, mariarosaria.mattei@unina.it
M. R. MATTEI
Affiliation:
Department of Mathematics and Applications, University of Naples “Federico II”, Complesso Monte Sant'Angelo, 80124 Naples, Italy emails: dacunto@unina.it, luigi.frunzo@unina.it, vincenzo.luongo@unina.it, mariarosaria.mattei@unina.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The work presents the analysis of the free boundary value problem related to the one-dimensional invasion model of new species in biofilm reactors. In the framework of continuum approach to mathematical modelling of biofilm growth, the problem consists of a system of non-linear hyperbolic partial differential equations governing the microbial species growth and a system of semi-linear elliptic partial differential equations describing the substrate trends. The model is completed with a system of elliptic partial differential equations governing the diffusion and reaction of planktonic cells, which are able to switch their mode of growth from planktonic to sessile when specific environmental conditions are found. Two systems of non-linear differential equations for the substrate and planktonic cells mass balance within the bulk liquid are also considered. The free boundary evolution is governed by a differential equation that accounts for detachment. The qualitative analysis is performed and a uniqueness and existence result is presented. Furthermore, two special models of biological and engineering interest are discussed numerically. The invasion of Anammox bacteria in a constituted biofilm inhabiting the deammonification units of the wastewater treatment plants is simulated. Numerical simulations are run to evaluate the influence of the colonization process on biofilm structure and activity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2018 

References

[1] Boltz, J. P., Smets, B. F., Rittmann, B. E., van Loosdrecht, M. C., Morgenroth, E. & Daigger, G. T. (2017) From biofilm ecology to reactors: A focused review. Water Sci. Technol. 75 (8), 17531760.Google Scholar
[2] Mattei, M. R., Frunzo, L., D'Acunto, B., Esposito, G. & Pirozzi, F. (2015) Modelling microbial population dynamics in multispecies biofilms including anammox bacteria. Ecol. Modell. 304, 4458.Google Scholar
[3] Ward, J. P. & King, J. R. (2012) Thin-film modelling of biofilm growth and quorum sensing. J. Eng. Math. 73 (1), 7192.Google Scholar
[4] Houry, A., Gohar, M., Deschamps, J., Tischenko, E., Aymerich, S., Gruss, A., & Briandet, R. (2012) Bacterial swimmers that infiltrate and take over the biofilm matrix. PNAS 109 (32), 1308813093.Google Scholar
[5] Eberl, H. J., Parker, D. F. & Van Loosdrecht, M. (2001) A new deterministic spatio-temporal continuum model for biofilm development. Comput. Math. Methods Med. 3 (3), 161175.Google Scholar
[6] Sonner, S., Efendiev, M. A. & Eberl, H. J. (2015) On the well-posedness of mathematical models for multicomponent biofilms. Math. Methods Appl. Sci. 38 (17), 37533775.Google Scholar
[7] Zhang, T., Cogan, N. G. & Wang, Q. (2008) Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69 (3), 641669.Google Scholar
[8] Picioreanu, C., Kreft, J. U. & Van Loosdrecht, M. C. (2004) Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70 (5), 30243040.Google Scholar
[9] Jayathilake, P. G., Gupta, P., Li, B., Madsen, C., Oyebamiji, O., González-Cabaleiro, R., Rushton, S., Bridgens, B., Swailes, D., Allen, B., McGough, A. S., Zuliani, P., Ofiteru, I. D., Wilkinson, D., Chen, J., & Curtis, T. (2017) A mechanistic individual-based model of microbial communities. Plos one 12 (8), e0181965.Google Scholar
[10] Mattei, M. R., Frunzo, L., D'Acunto, B., Pechaud, Y., Pirozzi, F. & Esposito, G. (2018) Continuum and discrete approach in modeling biofilm development and structure: A review. J. Math. Biol. 76 (4), 9451003.Google Scholar
[11] Wanner, O. & Gujer, W. (1986) A multispecies biofilm model. Biotechnol. Bioeng. 28 (3), 314328.Google Scholar
[12] Klapper, I. & Szomolay, B. (2011) An exclusion principle and the importance of mobility for a class of biofilm models. Bull. Math. Biol. 73 (9), 22132230.Google Scholar
[13] Wanner, O. & Reichert, P. (1996) Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng. 49 (2), 172184.Google Scholar
[14] D'Acunto, B., Frunzo, L., Klapper, I. & Mattei, M. (2015) Modeling multispecies biofilms including new bacterial species invasion. Math. Biosci. 259, 2026.Google Scholar
[15] Mašić, A. & Eberl, H. J. (2014) A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor. Bull. Math. Biol. 76 (1), 2758.Google Scholar
[16] Szomolay, B. (2008) Analysis of a moving boundary value problem arising in biofilm modelling. Math. Methods Appl. Sci. 31 (15), 18351859.Google Scholar
[17] Szomolay, B., Klapper, I. & Dindos, M. (2010) Analysis of adaptive response to dosing protocols for biofilm control. SIAM J. Appl. Math. 70 (8), 31753202.Google Scholar
[18] D'Acunto, B., Frunzo, L. & Mattei, M. R. (2016) Qualitative analysis of the moving boundary problem for a biofilm reactor model. J. Math. Anal. Appl. 438 (1), 474491.Google Scholar
[19] Frunzo, L. & Mattei, M. R. (2017) Qualitative analysis of the invasion free boundary problem in biofilms. Ricerche di Matematica 66 (1), 171188.Google Scholar
[20] Dockery, J. & Klapper, I. (2002) Finger formation in biofilm layers. SIAM J. Appl. Math. 62 (3), 853869.Google Scholar
[21] Rogers, S. S., Van Der Walle, C. & Waigh, T. A. (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24 (23), 1354913555.Google Scholar
[22] D'Acunto, B., Esposito, G., Frunzo, L. & Pirozzi, F. (2011) Dynamic modeling of sulfate reducing biofilms. Comput. Math. Appl. 62 (6), 26012608.Google Scholar
[23] Cao, Y., van Loosdrecht, M. C. & Daigger, G. T. (2017) Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 101 (4), 13651383.Google Scholar
[24] Abbas, F., Sudarsan, R. & Eberl, H. J. (2011) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math. Biosci. Eng. 9 (2), 215239.Google Scholar
[25] Ostace, G. S., Cristea, V. M. & Agachi, P. (2011) Cost reduction of the wastewater treatment plant operation by MPC based on modified ASM1 with two-step nitrification/denitrification model. Comput. Chem. Eng. 35 (11), 24692479.Google Scholar
[26] Capone, F. & De Luca, R. 2012 Onset of convection for ternary fluid mixtures saturating horizontal porous layers with large pores. Rend. Lincei Mat. Appl. 23 (4), 405428.Google Scholar
[27] Capone, F., De Cataldis, V., De Luca, R. & Torcicollo, I. (2014) On the stability of vertical constant throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 59, 18.Google Scholar