Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T19:11:35.327Z Has data issue: false hasContentIssue false

Introduction: Big data and partial differential equations

Published online by Cambridge University Press:  07 November 2017

YVES VAN GENNIP
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK email: y.vangennip@nottingham.ac.uk
CAROLA-BIBIANE SCHÖNLIEB
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK email: cbs31@cam.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Partial differential equations (PDEs) are expressions involving an unknown function in many independent variables and their partial derivatives up to a certain order. Since PDEs express continuous change, they have long been used to formulate a myriad of dynamical physical and biological phenomena: heat flow, optics, electrostatics and -dynamics, elasticity, fluid flow and many more. Many of these PDEs can be derived in a variational way, i.e. via minimization of an ‘energy’ functional. In this globalised and technologically advanced age, PDEs are also extensively used for modelling social situations (e.g. models for opinion formation, mathematical finance, crowd motion) and tasks in engineering (such as models for semiconductors, networks, and signal and image processing tasks). In particular, in recent years, there has been increasing interest from applied analysts in applying the models and techniques from variational methods and PDEs to tackle problems in data science. This issue of the European Journal of Applied Mathematics highlights some recent developments in this young and growing area. It gives a taste of endeavours in this realm in two exemplary contributions on PDEs on graphs [1, 2] and one on probabilistic domain decomposition for numerically solving large-scale PDEs [3].

Type
Introduction
Copyright
Copyright © Cambridge University Press 2017 

Footnotes

CBS acknowledges support from the Leverhulme Trust project Breaking the non-convexity barrier, the EPSRC grant EP/M00483X/1, EPSRC centre EP/N014588/1, the Cantab Capital Institute for the Mathematics of Information, the CHiPS (Horizon 2020 RISE project grant), the Global Alliance project ‘Statistical and Mathematical Theory of Imaging’ and the Alan Turing Institute.

References

[1] Trillos, N. G. & Murray, R. (2017) A new analytical approach to consistency and overfitting in regularized empirical risk minimization. EJAM. 28 (6), 886921.Google Scholar
[2] Elmoataz, A., Desquesnes, X. & Toutain, M. (2017) On the game p-Laplacian on weighted graphs with applications in image processing and data clustering. EJAM. 28 (6), 922948.Google Scholar
[3] Bernal, F., dos Reis, G. & Smith, G. (2017) Hybrid PDE solver for data-driven problems and modern branching. EJAM. 28 (6), 949972.Google Scholar
[4] Bertozzi, A. L. & Flenner, A. (2012) Diffuse interface models on graphs for analysis of high dimensional data. Multiscale Model. Simul. 10 (3), 10901118.Google Scholar
[5] van Gennip, Y. & Bertozzi, A. L. (2012) Γ-convergence of graph Ginzburg–Landau functionals. Adv. Differ. Equ. 17 (11/12), 11151180.Google Scholar
[6] Dal Maso, G. (1993) An Introduction to Γ-Convergence, Birkhäuser, Boston, USA.Google Scholar
[7] Braides, A. (2002) Γ-Convergence for Beginners, Oxford University Google Scholar
[8] Modica, L. & Mortola, S. (1977) Un esempio di Γ-convergenza. Boll. dell'Unione Mat. Ital. 5 (14-B), 285299.Google Scholar
[9] Modica, L. (1987) The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (2), 123142.Google Scholar
[10] von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput. 17 (4), 395416.Google Scholar
[11] Garcia Trillos, N. & Slepčev, D. (2016) Continuum limit of total variation on point clouds. Arch. Ration. Mech. Anal. 220 (1), 193241.Google Scholar
[12] Garcia, Trillos, N., Slepčev, D., von Brecht, J., Laurent, T. & Bresson, X. (2016) Consistency of cheeger and ratio graph cuts. J. Mach. Learn. Res. 17, 146.Google Scholar
[13] Thorpe, M. & Theil, F. Asymptotic analysis of the Ginzburg–Landau functional on point clouds. to appear, arXiv preprint arXiv:1604.04930Google Scholar
[14] Merriman, B., Bence, J. K. & Osher, S. J. (1994) Motion of multiple functions: A level set approach. J. Comput. Phys. 112 (2), 334363.Google Scholar
[15] Chung, F. (1997) Spectral Graph Theory, American Mathematical Society, Providence, Rhode Island, USA.Google Scholar
[16] Merkurjev, E., Kostic, T. & Bertozzi, A. L. (2013) An MBO scheme on graphs for segmentation and image processing. SIAM J. Imaging Sci. 6 (4), 19031930.Google Scholar
[17] Nyström, E. J. (1928) Über die Praktische Auflösung von Linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie. Comment. Phys.-Math. 4 (15), 152.Google Scholar
[18] Fowlkes, C., Belongie, S., Chung, F. & Malik, J. (2004) Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2), 214225.Google Scholar
[19] Anderson, C. R. (2010) A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices. J. Comput. Phys. 229 (19), 74777487.Google Scholar
[20] Calatroni, L., van Gennip, Y., Schönlieb, C.-B., Rowland, H. & Flenner, A. (2017) Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images. J. Math. Imaging Vis. 57 (2), 269291.Google Scholar
[21] Garcia-Cardona, C., Flenner, A. & Percus, A. G. (2013) Multiclass diffuse interface models for semi-supervised learning on graphs. In: Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2013), pp. 78–86.Google Scholar
[22] Merkurjev, E., Garcia-Cardona, C., Bertozzi, A. L., Flenner, A. & Percus, A. G. (2014) Diffuse interface methods for multiclass segmentation of high-dimensional data. Appl. Math. Lett. 33, 2934.Google Scholar
[23] Garcia-Cardona, C., Merkurjev, E., Bertozzi, A. L., Flenner, A. & Percus, A. G. (2014) Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36, 16001613.Google Scholar
[24] Garcia-Cardona, C., Flenner, A. & Percus, A. G. (2015) Multiclass semi-supervised learning on graphs using Ginzburg–Landau functional minimization. Adv. Intell. Syst. Comput. 318 (2015), 119135.Google Scholar
[25] Meng, Z., Merkurjev, E., Koniges, A. & Bertozzi, A. L. (2017) Hyperspectral image classification using graph clustering methods. Image Process. Line 7, 218245.Google Scholar
[26] Luo, X. & Bertozzi, A. L. (2017) Convergence of the graph Allen–Cahn scheme. J. Stat. Phys. 167 (3), 934958.Google Scholar
[27] Bosch, J., Klamt, S. & Stoll, M. Generalizing diffuse interface methods on graphs: non-smooth potentials and hypergraphs. arXiv preprint arXiv:1611.06094.Google Scholar
[28] Keetch, B. & van Gennip, Y. A Max-Cut approximation using a graph based MBO scheme, in preparationGoogle Scholar
[29] Brakke, K. A. (1978) The Motion of a Surface by its Mean Curvature, Princeton University.Google Scholar
[30] Bronsard, L. & Kohn, R. V. (1991) Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics. J. Differ. Equ. 90 (2), 211237.Google Scholar
[31] Evans, L. C. (1993) Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42 (2), 533557.Google Scholar
[32] Barles, G., Soner, H. M. & Souganidis, P. E. (1993) Front propagation and phase field theory. SIAM J. Control Optim. 31 (2), 439469.Google Scholar
[33] Barles, G. & Georgelin, C. (1995) A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32 (2), 484500.Google Scholar
[34] van Gennip, Y., Guillen, N., Osting, B. & Bertozzi, A. L. (2014) Mean curvature, threshold dynamics, and phase field theory on finite graphs. Milan J. Math. 82 (1), 365.Google Scholar
[35] Almgren, F., Taylor, J. E. & Wang, L. (1993) Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31 (2), 387438.Google Scholar
[36] Luckhaus, S. & Sturzenhecker, T. (1995) Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3 (2), 253271.Google Scholar
[37] Taylor, J. E. (1996) Anisotropic interface motion. Math. Microstruct. Evol. 4, 135148.Google Scholar
[38] Ohta, T. & Kawasaki, K. (1986) Equilibrium morphology of block copolymer melts. Macromolecules 19, 26212632.Google Scholar
[39] van Gennip, Y. An MBO scheme for minimizing the graph Ohta–Kawasaki functional. in preparationGoogle Scholar
[40] Peres, Y. & Sheffield, S. (2008) Tug-of-war with noise: A game-theoretic view of the p-Laplacian. Duke Math. J. 145 (1), 91120.Google Scholar
[41] Lions, P. L. (1988) On the Schwarz alternating method, I. In: Proceedings of the 1st International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 1–42.Google Scholar
[42] Bramble, J. H., Pasciak, J. E., Wang, J. P. & Xu, J. (1991) Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comput. 57 (195), 121.Google Scholar
[43] Xu, J. (1992) Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (4), 581613.Google Scholar
[44] Chan, T. F. & Mathew, T. P. (1994) Domain decomposition algorithms. Acta Numer. 3, 61143.Google Scholar
[45] Quarteroni, A. & Valli, A. (1999) Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Clarendon Press/Oxford University, New York, Oxford Science Publications.Google Scholar
[46] Smith, B., Bjorstad, P., , P. & Gropp, W. (2004) Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University.Google Scholar
[47] Nesterov, Y. (2012) Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22 (2), 341362.Google Scholar
[48] Acebron, J. A., Busico, M. P., Lanucara, P. & Spigler, R. (2005) Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods. SIAM J. Sci. Comput. 27 (2).Google Scholar
[49] van Gennip, Y. (2017) Using evolving interface techniques to solve network problems. In: Mathematisches Forschungsinstitut Oberwolfach Report: Emerging Developments in Interfaces and Free Boundaries, Vol. 6, pp. 2429.Google Scholar