Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T03:59:19.556Z Has data issue: false hasContentIssue false

Integration of the modified double layer potential of the vector boundary element method for eddy current problems

Published online by Cambridge University Press:  16 June 2022

S. SIVAK
Affiliation:
Department of Applied Mathematics, Novosibirsk State Technical University, 20 Karl Marks Avenue, Novisibirsk 630073, Russia email: siwakserg@yandex.ru; istupakov@gmail.com; mikeroyak@gmail.com; svetlana.royak@gmail.com
I. STUPAKOV
Affiliation:
Department of Applied Mathematics, Novosibirsk State Technical University, 20 Karl Marks Avenue, Novisibirsk 630073, Russia email: siwakserg@yandex.ru; istupakov@gmail.com; mikeroyak@gmail.com; svetlana.royak@gmail.com
M. ROYAK
Affiliation:
Department of Applied Mathematics, Novosibirsk State Technical University, 20 Karl Marks Avenue, Novisibirsk 630073, Russia email: siwakserg@yandex.ru; istupakov@gmail.com; mikeroyak@gmail.com; svetlana.royak@gmail.com
S. ROYAK
Affiliation:
Department of Applied Mathematics, Novosibirsk State Technical University, 20 Karl Marks Avenue, Novisibirsk 630073, Russia email: siwakserg@yandex.ru; istupakov@gmail.com; mikeroyak@gmail.com; svetlana.royak@gmail.com

Abstract

The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

af Klinteberg, L. & Tornberg, A. K. (2018) Adaptive quadrature by expansion for layer potential evaluation in two dimensions. SIAM J. Sci. Comput. 40(3), A1225A1249.Google Scholar
Bao, Y., Liu, Z. & Song, J. (2018) Adaptive cross approximation algorithm for accelerating bem in eddy current nondestructive evaluation. J. Nondestr. Eval. 37(4), 68.CrossRefGoogle Scholar
Borisenko, A. I. & Tarapov, I. E. (1963) Vektornyi analiz i nachala tenzornogo ischisleniia, Vysshaia shkola, Moscow.Google Scholar
Borisenko, A. I. & Tarapov, I. E. (1968) Vector and Tensor Analysis with Applications, Courier Corporation, New York.Google Scholar
Bossavit, A. (1998) Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, San Diego.Google Scholar
Botha, M. M. (2013) A family of augmented duffy transformations for near-singularity cancellation quadrature. IEEE Trans. Antennas Propag. 61(6), 31233134.CrossRefGoogle Scholar
Breuer, J. (2005) Schnelle randelementmethoden zur simulation von elektrischen wirbelstromfeldern sowie ihrer wärmeproduktion und kühlung. https://elib.uni-stuttgart.de/handle/11682/4763 Google Scholar
Cano Cancela, A. (2017) Transformation methods for the integration of singular and near-singular functions in xfem= métodos de transformación para la integración de funciones singulares y casi-singulares en xfem. http://62.204.194.43/fez/eserv/tesisuned:Ciencias-Acano/CANO_CANCELA_Alfredo_Tesis.pdf Google Scholar
Colton, D. & Kress, R. (2013) Integral Equation Methods in Scattering Theory. SIAM, Philadelphia.CrossRefGoogle Scholar
Hiptmair, R. (2003) Boundary element methods for eddy current computation. In: Computational Electromagnetics, Springer, Berlin, Heidelberg, pp. 103126.CrossRefGoogle Scholar
Hiptmair, R. & Ostrowski, J. (2005) Coupled boundary-element scheme for eddy-current computation. J. Eng. Math. 51(3), 231250 CrossRefGoogle Scholar
Järvenpää, S., Taskinen, M. & Ylä-Oijala, P. (2003) Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra. Int. J. Numer. Methods Eng. 58(8), 11491165.CrossRefGoogle Scholar
Jin, J. M. (2015) The Finite Element Method in Electromagnetics, John Wiley & Sons, New York.Google Scholar
Keller, P. (2007) A method for indefinite integration of oscillatory and singular functions. Numerical Algorithms 46(3), 219251.CrossRefGoogle Scholar
Nair, N., Pray, A., Villa-Giron, J., Shanker, B. & Wilton, D. (2013) A singularity cancellation technique for weakly singular integrals on higher order surface descriptions. IEEE Trans. Antennas Propag. 61(4), 23472352.CrossRefGoogle Scholar
Natanson, I. P. (1949) Konstruktivnaja teorija funkcij, Nauka, Moscow.Google Scholar
Royak, M. E., Stupakov, I. M. & Kondratyeva, N. S. (2016) Coupled vector fem and scalar bem formulation for eddy current problems. In: 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Vol. 2, IEEE, pp. 330335.Google Scholar
Sivak, S. A., Royak, M. E. & Stupakov, I. M. (2021) Coupling of vector and scalar boundary element methods, pp. 616620. 10.1109/APEIE52976.2021.9647694 CrossRefGoogle Scholar
Steinbach, O. (2007) Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer Science & Business Media, New York.Google Scholar
Stratton, J. A. & Chu, L. (1939) Diffraction theory of electromagnetic waves. Phys. Rev. 56(1), 99.CrossRefGoogle Scholar
Stupakov, I., Royak, M. & Kondratyeva, N. (2019) Coupled finite and boundary element method for solving magnetic hysteresis problems. WIT Trans. Eng. Sci. 126, 125135.Google Scholar
Vipiana, F. & Wilton, D. R. (2012) Numerical evaluation via singularity cancellation schemes of near-singular integrals involving the gradient of helmholtz-type potentials. IEEE Trans. Antennas Propag. 61(3), 12551265.Google Scholar
Wala, M. & Klöckner, A. (2019) A fast algorithm for quadrature by expansion in three dimensions. J. Comput. Phys. 388, 655689.CrossRefGoogle Scholar
Wala, M. & Klöckner, A. (2020) Optimization of fast algorithms for global quadrature by expansion using target-specific expansions. J. Comput. Phys. 403, 108976.CrossRefGoogle Scholar