Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:26:17.365Z Has data issue: false hasContentIssue false

Existence of solutions for elastohydrodynamic piezoviscous lubrication problems with a new model of cavitation

Published online by Cambridge University Press:  26 September 2008

G. Bayada
Affiliation:
CNRS URA 740–856. Math 403 I.N.S.A. 69621-Villeurbanne Cedex, France
M. El Alaoui Talibi
Affiliation:
Department of Mathematics. Fac. Sciences Semlalia. 40000-Marrakech, Morocco
C. Vázquez
Affiliation:
Department of Applied Mathematics. E.T.S.I. of Telecomunications. 36280-Vigo, Spain

Abstract

The purpose of this paper is to study a mathematical model of lubricating flow between elastic surfaces obeying the linear Hertzian theory when cavitation takes place. Cavitation is a free boundary phenomenon that is described in this paper by the New Elrod–Adams model. This model introduces the concentration of fluid as well as the pressure as unknown functions and is suggested in preference to the classical variational inequality due to its ability to describe inflow and outflow. This leads to a nonlinear variational and nonlocal equation. Herein, an existence theorem is proved by means of two different techniques.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Oden, J. T. & Wu, S. R. 1985 Existence of solutions to the Reynolds equation of elastohydrodynamic lubrication. Int. J. Eng. Sci. 23: 207215.CrossRefGoogle Scholar
[2] Hu, B. 1990 A quasivariational inequality arising in elastohydrodynamics. SIAM J. Math. Annal. 21: 1836.CrossRefGoogle Scholar
[3] Rodrígues, J. F. 1993 Remarks on the Reynolds problem of elastohydrodynamic lubrication. Euro. J. Appl. Math. 4: 8396.CrossRefGoogle Scholar
[4] Goeleven, D. & Nguyen, V. H. 1994 On the one-dimensional nonlinear elastohydrodynamic lubrication. Bull. Australian Math. Soc. 50: 353372.Google Scholar
[5] Bayada, G. & Chambat, M. 1986 Sur quelques modelisations de la zone de cavitation en lubrification hydrodynamique. J. Theor. Appl. Mech. 5(5): 703729.Google Scholar
[6] Bayada, G. & Chambat, M. 1984 Existence and uniqueness for a lubrication problem with nonregular conditions on the free boundary. Boll. U.M.I. 6(3B): 543557.Google Scholar
[7] Dowson, D. & Taylor, C. M. 1979 Cavitation in bearings. Ann. Rev. Fluid. Mech. 11: 3566.Google Scholar
[8] Elliott, C. M. & Ockendon, J. R. 1982 Weak and Variational Methods for Moving Boundary Problems. Pitman.Google Scholar
[9] Bissett, E. J. 1989 The line contact problem of elastohydrodynamic lubrication: I. Asymthotic structure for low speeds. Proc. R. Soc. Lond. A424: 393407.Google Scholar
[10] Kinderlehrer, D. & Stampacchia, G. 1980 An Introduction to Variational Inequalities and their Applications. Academic Press.Google Scholar
[11] Chipot, M. 1984 Variational Inequalities and Flow on Porous Media. Applied Math. Sciences Series 52. Springer-Verlag.Google Scholar
[12] Gilbarg, D. & Trudinger, N. S. 1977 Elliptic partial Differential Equations of Second Order. Springer-Verlag.Google Scholar
[13] Brezis, H., Kinderlehrer, D. & Stampacchia, G. 1978 Sur une nouvelle formulation du probléme de l'écoulement á travers une digue. C.R. Acad. Sci. Paris. Sér. A–B 187: 711714.Google Scholar
[14] Greenwood, J. A. 1972 An extension of the Grubin theory of elastohydrodynamic lubrication. J. Phys. D: Appl. Phys. 5: 21952211.Google Scholar
[15] Alvarez, S. 1986 Problemas de Frontera Libre en Teoria de Lubrificación. PhD Thesis. University Complutense of Madrid, Spain.Google Scholar
[16] Vázquez, C. 1994 Existence and uniqueness of solution for a lubrication problem with cavitation in a journal bearing with axial supply. Adv. in Math. Sci. and Appl. 4 (2): 313331.Google Scholar
[17] Vázquez, C. 1992 Andlisis matemático y resolución numérica de problemas de lubricación con cavitaci⊙n. PhD Thesis. University of Santiago, Spain.Google Scholar