Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:05:37.177Z Has data issue: false hasContentIssue false

Domain formation via phase separation for spherical biomembranes with small deformations

Published online by Cambridge University Press:  18 September 2020

C. M. ELLIOTT
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK emails: C.M.Elliott@warwick.ac.uk; L.Hatcher@warwick.ac.uk
L. HATCHER
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK emails: C.M.Elliott@warwick.ac.uk; L.Hatcher@warwick.ac.uk

Abstract

We derive and analyse an energy to model lipid raft formation on biological membranes involving a coupling between the local mean curvature and the local composition. We apply a perturbation method recently introduced by Fritz, Hobbs and the first author to describe the geometry of the surface as a graph over an undeformed Helfrich energy minimising surface. The result is a surface Cahn–Hilliard functional coupled with a small deformation energy. We show that suitable minimisers of this energy exist and consider a gradient flow with conserved Allen–Cahn dynamics, for which existence and uniqueness results are proven. Finally, numerical simulations show that for the long-time behaviour raft-like structures can emerge and stabilise, and their parameter dependence is further explored.

Type
Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abels, H. & Kampmann, J. (2020) On a model for phase separation on biological membranes and its relation to the Ohta-Kawasaki equation. Eur. J. Appl. Math. 32(2), 297338.CrossRefGoogle Scholar
Aubin, T. (1982) Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Vol. 252, Springer-Verlag, New York, XII+204.CrossRefGoogle Scholar
Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. (1997) Efficient management of parallelism in object oriented numerical software libraries. In: E. Arge, A.M. Bruaset, H.P. Langtangen (editors), Modern Software Tools for Scientific Computing. Birkhäser, Boston, MA., pp. 163202.CrossRefGoogle Scholar
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., Curfman McInnes, L., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H. & Zhang, H., PETSc Users Manual, ANL-95/11 - Revision 3.13, 2020. http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdfGoogle Scholar
Bassereau, P. & Sens, P. (2003) Physics of Biological Membranes, Springer, Cham, X+623.Google Scholar
Baumgart, T., Hess, S. T. & Webb, W. W. (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(6960), 821.CrossRefGoogle ScholarPubMed
Blowey, J. F. & Elliott, C. M. (1993) Curvature dependent interface motion and parabolic obstacle problems. In: Ni, W.-M., Peletier, L. A. and Vazquez, J. L. (editors), Degenerate Diffusion, IMA Volumes in Mathematics, Springer, New York, Vol. 47, pp. 19–60.Google Scholar
Boyer, F. & Fabrie, P.. (2012) Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer-Verlag, New York, 183, XIV + 526.Google Scholar
Callan-Jones, A. & Bassereau, P. (2013) Curvature-driven membrane lipid and protein distribution. Curr. Opin. Solid State Mater. Sci. 17(4), 143150.CrossRefGoogle Scholar
Canham, P. B. (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 6181.CrossRefGoogle ScholarPubMed
Ciarlet, P. G. (2013) Linear and nonlinear functional analysis with applications, SIAM 130, XIV+832.Google Scholar
Dalcin, L., Kler, P., Paz, R. & Cosimo, A. (2011) Parallel distributed computing using python. Adv. Water Resour. 34(9), 11241139.CrossRefGoogle Scholar
Dedner, A. & Nolte, M. (2018) The dune python module. arXiv preprint arXiv:1807.05252.Google Scholar
Dziuk, G. & Elliott, C. M. (2013) Finite element methods for surface PDEs. Acta Numerica 22, 289396.CrossRefGoogle Scholar
Elliott, C. M., Fritz, H. & Hobbs, G. (2017) Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Math. Models Methods Appl. Sci. 27(8), 15471586.CrossRefGoogle Scholar
Elliott, C. M., Gräser, C., Hobbs, G., Kornhuber, R. & Wolf, M. W. (2016) A variational approach to particles in lipid membranes. Arch. Ration. Mech. Anal. 222(2), 10111075.CrossRefGoogle Scholar
Elliott, C. M. & Stinner, B. (2010) Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 65856612.CrossRefGoogle Scholar
Elliott, C. M. & Stinner, B. (2010) A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70(8), 29042928.CrossRefGoogle Scholar
Elliott, C. M. & Stinner, B. (2013) Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13(2), 325360.CrossRefGoogle Scholar
Fonseca, I., Hayrapetyan, G., Leoni, G. & Zwicknagl, B. (2016) Domain formation in membranes near the onset of instability. J. Nonlinear Sci. 26(5), 11911225.CrossRefGoogle Scholar
Garcke, H., Kampmann, J., Rätz, A. & Röger, M. (2016) A coupled surface Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes. Math. Models Methods Appl. Sci. 26(6), 11491189.CrossRefGoogle Scholar
Healey, T. J. & Dharmavaram, S. (2017) Symmetry-breaking global bifurcation in a surface continuum phase-field model for lipid bilayer vesicles. SIAM J. Math. Anal. 49(2), 10271059.CrossRefGoogle Scholar
Helfrich, W. (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12), 693703.CrossRefGoogle ScholarPubMed
Hess, S. T., Gudheti, M. S., Mlodzianoski, M. & Baumgart, T. (2007) Shape analysis of giant vesicles with fluid phase coexistence by laser scanning microscopy to determine curvature, bending elasticity, and line tension. In: A.M Dopico (editors), Methods in Membrane Lipids, Humana Press (400), pp. 367387.Google Scholar
Kuzmin, P. I., Akimov, S. A., Chizmadzhev, Y. A., Zimmerberg, J. & Cohen, F. S. (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88(2), 11201133.CrossRefGoogle ScholarPubMed
Leibler, S. (1986) Curvature instability in membranes. J. de Physique 47(3), 507516.CrossRefGoogle Scholar
McMahon, H. T. & Gallop, J. L. (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590596.CrossRefGoogle ScholarPubMed
Parthasarathy, R., Yu, C. H. & Groves, J. T. (2006) Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22(11), 50955099.CrossRefGoogle Scholar
Pike, L. J. (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res. 47(7), 15971598.CrossRefGoogle Scholar
Rinaldin, M., Fonda, P., Giomi, L. & Kraft, D. J. (2020) Geometric pinning and antimixing in scaffolded lipid vesicles. Nature Communications 11(1), 110.CrossRefGoogle ScholarPubMed
Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361.CrossRefGoogle ScholarPubMed
Simons, K. & Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387(6633), 569.CrossRefGoogle ScholarPubMed
Wang, X. & Du, Q. (2008) Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347371.CrossRefGoogle ScholarPubMed