Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:52:33.523Z Has data issue: false hasContentIssue false

Concentration of personal and household crimes in England and Wales

Published online by Cambridge University Press:  06 April 2010

ANDROMACHI TSELONI
Affiliation:
Division of Criminology, Public Health and Policy Studies, Nottingham Trent University, Burton street, Nottingham NG1 4BU, UK email: andromachi.tseloni@ntu.ac.uk
IOANNIS NTZOUFRAS
Affiliation:
Department of Statistics, Athens Economic University, Patission 76, 10434 Athens, Greece email: ntzoufras@aueb.gr
ANNA NICOLAOU
Affiliation:
Department of Business Administration, University of Macedonia, Egantia 156, 54006 Thessaloniki, Greece email: nicolaou@uom.gr
KEN PEASE
Affiliation:
Visiting Professor, Midlands Centre for Criminology and Criminal Justice, University of Loughborough, 19 Withypool Drive, Stockport SK2 6DT, UK email: k.pease@lboro.ac.uk

Abstract

Crime is disproportionally concentrated in few areas. Though long established, there remains uncertainty about the reasons for variation in the concentration of similar crime (repeats) or different crime (multiples). Wholly neglected have been composite crimes when more than one crime types coincide as parts of a single event. The research reported here disentangles area crime concentration into repeats, multiple and composite crimes. The results are based on estimated bivariate zero-inflated Poisson regression models with covariance structure which explicitly account for crime rarity and crime concentration. The implications of the results for criminological theorizing and as a possible basis for more equitable police funding are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bowers, K. J., Johnson, S. D. & Pease, K. (2004) Prospective hot-spotting: The future of crime mapping? Br. J. Criminol. 44, 641658.CrossRefGoogle Scholar
[2]Chenery, S., Ellingworth, D., Tseloni, A. & Pease, K. (1996) Crimes which repeat: Undigested evidence from the British Crime Survey 1992. Int. J. Risk Secur. Crime Prev. 1, 207216.Google Scholar
[3]Cohen, L. E. & Felson, M. (1979) Social change and crime rates and trends: A routine activity approach. Am. Sociol. Rev. 44, 588608.CrossRefGoogle Scholar
[4]Davidian, M. & Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data. Monographs on Statistics and Applied Probability 62. Chapman and Hall, London.Google Scholar
[5]Ellingworth, D., Hope, T., Osborn, D. R., Trickett, A. & Pease, K. (1997) Prior victimisation and crime risk. Int. J. Risk Secur. Crime Prev. 2, 201214.Google Scholar
[6]Ellingworth, D. & Pease, K. (1998) Movers and breakers: household property crime against those moving home. Int. J. Risk Secur. Crime Prev. 3, 3542.Google Scholar
[7]Farrell, G. & Pease, K.. (1993) Once Bitten, Twice Bitten: Repeat Victimisation and its Implications for Crime Prevention, Crime Prevention Unit Paper 46, Home Office, London.Google Scholar
[8]Farrell, G. & Pease, K. (2001) (eds.) Repeat Victimization. Criminal Justice Press, Monsey, NY.Google Scholar
[9]Farrell, G., Tseloni, A. & Pease, K. (2005) Repeat Victimization in the ICVS and NCVS. Crime Prev. Community Saf.: An Int. J. 7, 718.CrossRefGoogle Scholar
[10]Felson, M. (1998) Crime and Everyday Life, 2nd ed.Pine Forge Press, Thousand Oaks, CA.Google Scholar
[11]Forrester, D., Chatterton, M. & Pease, K. (1988) The Kirkholt Burglary Prevention Project, Rochdale, Crime Prevention Unit Paper 13. Home Office, London.Google Scholar
[12]Forrester, D., Frenz, S., O'Connell, M. & Pease, K. (1990) The Kirkholt Burglary Prevention Project: Phase II, Crime Prevention Unit Paper 23. Home Office, London.Google Scholar
[13]Greene, W. H. (1997) Econometric Analysis. Prentice Hall, Upper Saddle River, NJ.Google Scholar
[14]Hales, J., Henderson, L., Collins, D. & Becher, H. (2000) 2000 British Crime Survey (England and Wales): Technical Report. National Centre for Social Research, London.Google Scholar
[15]Hindelang, M., Gottfredson, M. R. & Garofalo, J. (1978) Victims of Personal Crime: An Empirical Foundation for a Theory of Personal Victimisation, Ballinger, Cambridge, UK.Google Scholar
[16]Hope, T. (2007). The social epidemiology of crime victims. In: Walklate, S. (editor), Handbook on Victims and Victimology, Willan, Uffculme, Devon, UK.Google Scholar
[17]Hope, T., Bryan, J., Trickett, A. & Osborn, D. R. (2001) The phenomena of multiple victimisation. Br. J. Criminol. 41, 595617.CrossRefGoogle Scholar
[18]Hough, M. & Mayhew, P. (1983) The British Crime Survey: First Report. Home Office Research Study no. 76, Her Majesty's Stationary Office, London.Google Scholar
[19]Juran, J. M. (1951) Quality Control Handbook, McGraw-Hill, New York.Google Scholar
[20]Karlis, D. & Ntzoufras, I. (2005) Bivariate Poisson and diagonal inflated bivariate Poisson regression models in R. J. Stat. Softw. 14. URL: http://www.jstatsoft.orgCrossRefGoogle Scholar
[21]Kennedy, L. W. & Forde, D.R. (1990) Routine activities and crime: An analysis of victimisation in Canada. Criminology 28, 137152.CrossRefGoogle Scholar
[22]Kershaw, C., Budd, T., Kinshott, G., Mattinson, J., Mayhew, P. & Myhill, A. (2000) The 2000 British Crime Survey England and Wales. Statistical Bulletin 18/00. Home Office, London.Google Scholar
[23]Kershaw, C., Chivite-Matthews, N., Thomas, C. & Aust, R. (2001) The 2001 British Crime Survey Final Results, England and Wales. Home Office Statistical Bulletin 18/01. Home Office, London.Google Scholar
[24]Kershaw, C. & Tseloni, A. (2005) Predicting crime rates, fear and disorder based on area information: Evidence from the 2000 British Crime Survey. Int. Rev. Victimol. 12, 295313.CrossRefGoogle Scholar
[25]Lee, A. H., Wang, K., Yau, K. K. W., Carrivick, P. J. W. & Stevenson, M. R. (2005) Modelling bivariate count series with excess zeros. Math. Biosci. 196, 226237.CrossRefGoogle ScholarPubMed
[26]Li, C., Lu, J., Park, J. P., Kim, K., Brinkley, P. A. & Peterson, J. P. (1999) Multivariate zero-inflated Poisson models and their applications. Technometrics 41, 2938.CrossRefGoogle Scholar
[27]Lynn, P. & Elliot, D. (2000) The British Crime Survey: A Review of Methodology. National Centre for Social Research, Paper 1974, March.Google Scholar
[28]McLoughlin, L. M., Johnson, S. D., Bowers, K. J., Birks, D. J. & Pease, K. (2007) Police perceptions of the long and short-term spatial distribution of residential burglary. Int. J. Police Sci. Manag. 9, 99111.CrossRefGoogle Scholar
[29]Nicholas, S., Kershaw, C. & Walker, A. (editors) (2007) Crime in England and Wales 2006/07. Home Office Statistical Bulletin 11/07.Google Scholar
[30]Osborn, D. R., Ellingworth, D., Hope, T. & Trickett, A. (1996) Are repeatedly victimised households different? J. Quant. Criminol. 12, 223245.CrossRefGoogle Scholar
[31]Osborn, D. R., Trickett, A. & Elder, R. (1992) Area characteristics and regional variates as determinants of area property crime levels. J. Quant. Criminol. 8, 265285.CrossRefGoogle Scholar
[32]Osborn, D. R. & Tseloni, A. (1998) The distribution of household property crimes. J. Quant. Criminol. 14, 307330.Google Scholar
[33]Pease, K. (1998) Repeat Victimisation: Taking Stock. Crime Detection and Prevention Series Paper No. 90. Home Office, London.Google Scholar
[34]Pease, K. (2008) The home office and the police: The case of the police funding formula. In: McVean, A. & Harfield, C. (editors), Handbook of Intelligent Policing, Wiley, Chichester, UK.Google Scholar
[35]Planty, M. & Strom, K. J. (2007) Understanding the role of repeat victims in the production of annual victimization rates J. Quant. Criminol. 23, 179200.CrossRefGoogle Scholar
[36]Reiss, A. J. (1980) Victim proneness in repeat victimization by type of crime. In: Fienberg, S. & Reiss, A. J. (editors), Indicators of Crime and Criminal Justice Quantitative Studies, Department of Justice, Washington, DC, pp. 4153.Google Scholar
[37]Sampson, R. J. & Groves, B. W. (1989) Community structure and crime: Testing social disorganization theory. Am. J. Sociol. 94, 774802.CrossRefGoogle Scholar
[38]Shaw, C. R. & McKay, M. D. (1942) Juvenile Delinquency and Urban Areas. Chicago University Press, Chicago, IL.Google Scholar
[39]Thorpe, (2007) Multiple and repeat victimisation. In: Jansson, K., Budd, S., Lovbakke, J., Moley, S. & Thorpe, K. (editors), Attirudes, Perceptions and Risks of Crime: Supplementary Volume 1 to Crime in England and Wales 2006/07, Home Office Statistical Bulletin 19/07. Home Office, London. pp. 8198.Google Scholar
[40]Trickett, A., Osborn, D. & Seymour, J. (1992) What is different about high crime areas? Br. J. Criminol. 32, 8190.CrossRefGoogle Scholar
[41]Trickett, A., Osborn, D. R. & Ellingworth, D. (1995) Property crime victimisation: The roles of individual and area influences. Int. Rev. Victimol. 3, 273295.CrossRefGoogle Scholar
[42]Tseloni, A. (2006). Multilevel modelling of the number of property crimes: Household and area effects. J. R. Stat. Soc. A 169, 205233.CrossRefGoogle Scholar
[43]Tseloni, A.Osborn, D. R., Trickett, A. & Pease, K. (2002) Modelling property crime using the British Crime Survey: What have we learned? Br. J. Criminol. 42, 89108.Google Scholar
[44]Venables, W. N., Smith, D. M. & the R Development Core Team (2007) An Introduction to R: Notes on R: A Progamming Environment for Data Analysis and Graphics, Version 2.5.1 (2007-06-27), R Development Core Team, URL: http://www.r-project.org/Google Scholar
[45]Wang, P. (2003) A bivariate zero-inflated negative binomial regression model for count data with excess zeros. Econ. Lett. 78, 373378.CrossRefGoogle Scholar
[46]Wang, K., Lee, A. H., Yau, K. K. W. & Carrivick, P. J. W. (2003) A bivariate zero-inflated Poisson regression model to analyse occupational injuries. Accid. Anal. Prev. 35, 625629.Google Scholar
[47]Xiang, L., Lee, A. H., Yau, K. K. W. & McLachlan, G. J. (2007) A score test for overdispersion in zero-inflated poisson mixed regression model. Stat. Med. 26, 16081622.CrossRefGoogle ScholarPubMed