Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ciuperca, Sorin Ionel
Perrussel, Ronan
and
Poignard, Clair
2010.
Influence of a Rough Thin Layer on the Potential.
IEEE Transactions on Magnetics,
Vol. 46,
Issue. 8,
p.
2823.
Ciuperca, Ionel Sorin
Perrussel, Ronan
and
Poignard, Clair
2011.
Two-scale analysis for very rough thin layers. An explicit characterization of the polarization tensor.
Journal de Mathématiques Pures et Appliquées,
Vol. 95,
Issue. 3,
p.
277.
LI, JINGYU
and
ZHANG, KAIJUN
2011.
REINFORCEMENT OF THE POISSON EQUATION BY A THIN LAYER.
Mathematical Models and Methods in Applied Sciences,
Vol. 21,
Issue. 05,
p.
1153.
POIGNARD, C.
2011.
Explicit characterization of the polarization tensor for rough thin layers.
European Journal of Applied Mathematics,
Vol. 22,
Issue. 1,
p.
1.
DURUFLÉ, MARC
PÉRON, VICTOR
and
POIGNARD, CLAIR
2011.
TIME-HARMONIC MAXWELL EQUATIONS IN BIOLOGICAL CELLS — THE DIFFERENTIAL FORM FORMALISM TO TREAT THE THIN LAYER.
Confluentes Mathematici,
Vol. 03,
Issue. 02,
p.
325.
Delourme, Bérangère
Haddar, Houssem
and
Joly, Patrick
2012.
Approximate models for wave propagation across thin periodic interfaces.
Journal de Mathématiques Pures et Appliquées,
Vol. 98,
Issue. 1,
p.
28.
Bellet, Jean-Baptiste
and
Berginc, Gérard
2013.
Modèle effectif de couche mince rugueuse périodique sur une structure semi-infinie.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 47,
Issue. 5,
p.
1367.
Delourme, Bérangère
2015.
High‐order asymptotics for the electromagnetic scattering by thin periodic layers.
Mathematical Methods in the Applied Sciences,
Vol. 38,
Issue. 5,
p.
811.
Bendali, A.
and
Poirier, J.‐R.
2015.
Scattering by a highly oscillating surface.
Mathematical Methods in the Applied Sciences,
Vol. 38,
Issue. 13,
p.
2785.
Delourme, Bérangère
Schmidt, Kersten
and
Semin, Adrien
2016.
On the homogenization of thin perforated walls of finite length.
Asymptotic Analysis,
Vol. 97,
Issue. 3-4,
p.
211.
Semin, Adrien
Delourme, Bérangère
and
Schmidt, Kersten
2018.
On the homogenization of the Helmholtz problem with thin perforated walls of finite length.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 52,
Issue. 1,
p.
29.
Schweizer, Ben
2020.
Effective Helmholtz problem in a domain with a Neumann sieve perforation.
Journal de Mathématiques Pures et Appliquées,
Vol. 142,
Issue. ,
p.
1.