Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:22:14.907Z Has data issue: false hasContentIssue false

Anisotropic diffusion in oriented environments can lead to singularity formation

Published online by Cambridge University Press:  20 December 2012

THOMAS HILLEN
Affiliation:
Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta, Canada email: thillen@ualberta.ca
KEVIN J. PAINTER
Affiliation:
Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK email: K.Painter@hw.ac.uk
MICHAEL WINKLER
Affiliation:
Institut für Mathematik, Universität Paderborn, Germany email: michael.winkler@math.uni-paderborn.de

Abstract

We consider an anisotropic diffusion equation of the form ut = ∇∇(D(x)u) in two dimensions, which arises in various applications, including the modelling of wolf movement along seismic lines and the invasive spread of certain brain tumours along white matter neural fibre tracts. We consider a degenerate case, where the diffusion tensor D(x) has a zero-eigenvalue for certain values of x. Based on a regularisation procedure and various pointwise and integral a priori estimates, we establish the global existence of very weak solutions to the degenerate limit problem. Moreover, we show that in the large time limit these solutions approach profiles that exhibit a Dirac-type mass concentration phenomenon on the boundary of the region in which diffusion is degenerate, which is quite surprising for a linear diffusion equation. The results are illustrated by numerical examples.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aronson, D. G. (1986) The porous medium equation. Lect. Notes Math. 1224, 146.CrossRefGoogle Scholar
[2]Beaulieu, C. (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15, 435455.Google Scholar
[3]Bonafede, S. (1994) On maximum principle for weak subsolutions of degenerate parabolic linear equations. Comment. Math. Univ. Carolin. 35, 417430.Google Scholar
[4]Bondiau, P. Y., Clatz, O., Sermesant, M., Marcy, P. Y., Delingette, H., Frenay, M. & Ayache, N. (2008) Biocomputing: Numerical simulation of glioblastoma growth using diffusion tensor imaging. Phys. Med. Biol. 53, 879893.CrossRefGoogle ScholarPubMed
[5]Cobzas, D., Mosayebi, P., Murtha, A. & Jagersand, M. (2009) Tumour invasion margin on the Riemannian space of brain fibres. In: International\Conference\Medical Image Computing and Computer Assisted Intervention, (MICCAI), London.Google Scholar
[6]Cosner, C. (2005) A dynamic model for the ideal-free distribution as a partial differential equation. Theoretical Population Biology, 67, 101108.Google Scholar
[7]Cosner, C. & Cantrell, R. S. (2003) Spatial Ecology via Reaction-Diffusion Equations, Wiley, Hoboken, NJ.Google Scholar
[8]Feller, W. (1951) Two singular diffusion problems. Annals Math. 54, 173182.Google Scholar
[9]Giese, A. & Westphal, M. (1996) Glioma invasion in the central nervous system. Neurosurgery 39, 235250.Google Scholar
[10]Hillen, T. (2003) Transport equations with resting phases. Europ. J. Appl. Math. 14 (5), 613636.Google Scholar
[11]Hillen, T. (2006) M 5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53 (4), 585616.Google Scholar
[12]Hillen, T. & Othmer, H. G. (2000) The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math. 61 (3), 751775.Google Scholar
[13]Hillen, T. & Painter, K. (2012) Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis, M., Maini, P. & Petrovskii, S. (editors), Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Heidelberg, Germany, Springer, p. 46.Google Scholar
[14]Jbabdi, A., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K. R., Pelegrini-Issac, M., Guillevin, R. & Benali, H. (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Mang. Res. Med. 54, 616624.Google Scholar
[15]Konukoglu, E., Clatz, O., Bondiau, P. Y., Delignette, H. & Ayache, N. (2010) Extrapolation glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins. Med. Image Anal. 14, 111125.Google Scholar
[16]Ladyžhenskaja, O. A., Solonnikov, V. A. & Ural'ceva, N.N. (1968) Linear and Quasilinear Equations of Parabolic Type, AMS Providence, RI.CrossRefGoogle Scholar
[17]Lewis, M. A. (In preparation) Resource selection functions, the ideal free distribution and random walks.Google Scholar
[18]McKenzie, H. W., Lewis, M. A. & Merrill, E. H. (2009) First passage time analysis of animal movement and insights into the functional response. Bull. Math. Biol. 71 (1), 107129.Google Scholar
[19]Mosayebi, P., Cobzas, D., Murtha, A. & Jagersand, M. (2011) Tumour invasion margin on the Riemannian space of brain fibres. Med. Image Anal. 16 (2), 361373.Google Scholar
[20]Okubo, A. & Levin, S. A. (2002) Diffusion and Ecological Problems: Modern Perspectives, Springer, New York.Google Scholar
[21]Othmer, H. G. & Hillen, T. (2002) The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62 (4), 11221250.Google Scholar
[22]Othmer, H. G. & Stevens, A. (1997) Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 10441081.Google Scholar
[23]Painter, K. J. (2009) Modelling migration strategies in the extracellular matrix. J. Math. Biol. 58, 511543.CrossRefGoogle ScholarPubMed
[24]Painter, K. J. & Hillen, T. (Submitted) Mathematical modelling of glioma growth: The use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion.Google Scholar
[25]Winkler, M. (2005) Large time behaviour and stability of equilibria of degenerate parabolic equations. J. Dyn. Differ. Eqns. 17 (2), 331351.Google Scholar