Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T07:57:13.793Z Has data issue: false hasContentIssue false

Mathematical modelling of Tyndall star initiation

Published online by Cambridge University Press:  12 August 2015

A. A. LACEY
Affiliation:
Maxwell Institute for Mathematical Sciences and Department of Mathematics, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK email: A.A.Lacey@hw.ac.uk
M. G. HENNESSY
Affiliation:
Department of Chemical Engineering, Imperial College, London, SW7 2AZ, UK email: m.hennessy@imperial.ac.uk
P. HARVEY
Affiliation:
Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK email: peter.harvey.11@alumni.ucl.ac.uk
R. F. KATZ
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK email: richard.katz@earth.ox.ac.uk

Abstract

The superheating that usually occurs when a solid is melted by volumetric heating can produce irregular solid–liquid interfaces. Such interfaces can be visualised in ice, where they are sometimes known as Tyndall stars. This paper describes some of the experimental observations of Tyndall stars and a mathematical model for the early stages of their evolution. The modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic kinetic undercooling at the interface; it leads to an interesting class of free boundary problems that treat the melt region as infinitesimally thin.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Angenent, S. B. & Gurtin, M. E. (1989) Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rat. Mech. Anal. 108, 323391.CrossRefGoogle Scholar
[2]Atthey, D. R. (1974) A finite difference scheme for melting problems. IMA J. Appl. Math. 13 (3), 353366.CrossRefGoogle Scholar
[3]Barles, G. & Souganidis, E. (1998) A new approach to front propagation problems: Theory and applications. Arch. Rat. Mech. Anal. 141, 237296.CrossRefGoogle Scholar
[4]Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. (2002) Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32, 163194.CrossRefGoogle Scholar
[5]Burton, W. B., Cabrera, N. & Frank, F. C. (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. London, Ser. A 243 (866), 299358.Google Scholar
[6]Cahoon, A., Maruyama, M. & Wettlaufer, J. S. (2006) Growth-melt asymmetry in crystals and twelve-sided snowflakes. Phys. Rev. Lett. 96, 255502.CrossRefGoogle ScholarPubMed
[7]Chadam, J., Howison, S. D. & Ortoleva, P. (1987) Existence and stability for spherical crystals growing in a supersaturated solution. IMA J. Appl. Math. 39, 115.CrossRefGoogle Scholar
[8]Coriell, S. R., McFadden, G. B. & Sekerka, R. F. (1999) Selection mechanisms for multiple similarity solutions for solidification and melting. J. Cryst. Growth 200, 276286.CrossRefGoogle Scholar
[9]Coriell, S. R., McFadden, G. B., Sekerka, R. F. & Boettinger, W. J. (1998) Multiple similarity solutions for solidification and melting. J. Cryst. Growth 191, 573585.CrossRefGoogle Scholar
[10]Davis, S. H. (2001) Theory of Solidification, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[11]Font, F., Mitchell, S. L. & Myers, T. G.One-dimensional solidification of supercooled melts. Int. J. Heat Mass Tran. 62, 411421.CrossRefGoogle Scholar
[12]Gurtin, M. E. (1993) Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon, Oxford.CrossRefGoogle Scholar
[13]Hu, H. & Argyropoulos, S. A. (1996) Mathematical modelling of solidification and melting: A review. Modelling Simul. Mater. Sci. Eng. 4, 371396.CrossRefGoogle Scholar
[14]Harvey, P. (2013) An Experimental Analysis of Tyndall Figures. Technical Report, Department of Earth Science, University of Oxford, Oxford.Google Scholar
[15]Hennessy, M. G. (2010) Liquid Snowflake Formation in Superheated Ice, M.Sc. thesis, University of Oxford, Oxford.Google Scholar
[16]Howison, S. D., Ockendon, J. R. & Wilson, S. K. (1991) Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.CrossRefGoogle Scholar
[17]Huppert, H. E. (1990) The fluid mechanics of solidification. J. Fluid Mech. 212, 209240.CrossRefGoogle Scholar
[18]Lacey, A. A. & Herraiz, L. A. (2000) Macroscopic models for melting derived from averaging microscopic Stefan problems I: Simple geometries with kinetic undercooling or surface tension. Eu. J. Appl. Math. 11 (2), 153169.CrossRefGoogle Scholar
[19]Lacey, A. A. & Herraiz, L. A. (2002) Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition. Eu. J. Appl. Math. 13 (3), 261282.CrossRefGoogle Scholar
[20]Lacey, A. A. & Shillor, M. (1983) The existence and stability of regions with superheating in the classical two-phase one-dimensional Stefan problem with heat sources. IMA J. Appl. Math. 30 (2), 215230.CrossRefGoogle Scholar
[21]Lacey, A. A. & Tayler, A. B. (1983) A mushy region in a Stefan problem. IMA J. Appl. Math. 30 (3), 303313.CrossRefGoogle Scholar
[22]Mae, S. (1975) Perturbations of disc-shaped internal melting figures in ice. J. Crystal Growth. 32 (1), 137138.CrossRefGoogle Scholar
[23]Maruyama, M., Kuribayashi, N., Kawabata, K. & Wettlaufer, J. S. (2000) A test of global kinetic faceting in crystals. Phys. Rev. Lett. 85 (12), 25452548.CrossRefGoogle ScholarPubMed
[24]Nakaya, U. (1956) Properties of Single Crystals of Ice, Revealed by Internal Melting, Technical report, Snow Ice and Permafrost Research Establishment, U.S. Army.Google Scholar
[25]Maruyama, M. (2011) Relation between growth and melt shapes of ice crystals. J. Cryst. Growth 318, 3639.CrossRefGoogle Scholar
[26]Mullins, W. W. & Sekerka, R. F. (1963) Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323329.CrossRefGoogle Scholar
[27]Ockendon, J., Howison, S., Lacey, A. & Movchan, A. 2003 Applied Partial Differential Equations, Oxford University Press, Oxford.CrossRefGoogle Scholar
[28]Shimada, W. & Furukawa, Y (1997) Pattern formation of ice cystals during free growth in supercooled water. J. Phys. Chem. B 101, 61716173.CrossRefGoogle Scholar
[29]Takeya, S. (2006) Growth of internal melt figures in superheated ice. Appl. Phys. Lett. 88, 074103.CrossRefGoogle Scholar
[30]Tyndall, J. (1858) On some physical properties of ice. Phil. Trans. Roy. Soc. Lond. 148, 211229.Google Scholar
[31]Tsemekhman, V. & Wettlaufer, J. S. (2003) Singularities, shocks, and instabilities in interface growth. St. Appl. Math. 110, 221256.CrossRefGoogle Scholar
[32]Uehara, T. & Sekerka, R.F. (2003) Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient. J. Cryst. Growth 254, 251261.CrossRefGoogle Scholar
[33]Wettlaufer, J. S. (2001) Dynamics of ice surfaces. Interface Sci. 9, 117129.CrossRefGoogle Scholar
[34]Wettlaufer, J. S., Jackson, M. & Elbaum, M. (1994) A geometric model for anisotropic crystal growth. J. Phys. A 27, 59575967.CrossRefGoogle Scholar
[35]Yokoyama, E. & Kuroda, T. (1990) Pattern formation in growth of snow crystals occurring in the surface kinetic process and the diffusion process. Phys. Rev. A 41, 20382050.CrossRefGoogle ScholarPubMed
[36]Yokoyama, E. & Sekerka, R. F. (1992) A numerical study of the combined effects of anisotropic surface tension and interface kinetics on pattern formation during the growth of two-dimensional crystals. J. Cryst. Growth 125, 289403.CrossRefGoogle Scholar
[37]Yokoyama, E., Sekerka, R. F. & Furukawa, Y. (2009) Growth of an ice disk: Dependence of critical thickness for disk instability on supercooling of water. J. Phys. Chem. B 113, 47334738.CrossRefGoogle ScholarPubMed