Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T02:54:45.463Z Has data issue: false hasContentIssue false

Characterising the disordered state of block copolymers: Bifurcations of localised states and self-replication dynamics

Published online by Cambridge University Press:  21 December 2011

KARL B. GLASNER*
Affiliation:
Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA4 email: kglasner@math.arizona.edu

Abstract

Above the spinodal temperature for micro-phase separation in block co-polymers, asymmetric mixtures can exhibit random heterogeneous structure. This behaviour is similar to the sub-critical regime of many pattern-forming models. In particular, there is a rich set of localised patterns and associated dynamics. This paper clarifies the nature of the bifurcation diagram of localised solutions in a density functional model of A−B diblock mixtures. The existence of saddle-node bifurcations is described, which explains both the threshold for heterogeneous disordered behaviour as well the onset of pattern propagation. A procedure to generate more complex equilibria by attaching individual structures leads to an interwoven set of solution curves. This results in a global description of the bifurcation diagram from which dynamics, in particular self-replication behaviour, can be explained.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Allgower, E. L. & Georg, K. (2003) Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
[2]Bates, F. S., Rosedale, J. H. & Fredrickson, G. H. (May 1990) Fluctuation effects in a symmetric diblock copolymer near the order–disorder transition. J. Chem. Phys. 92, 62556270.CrossRefGoogle Scholar
[3]Bates, F. S. & Fredrickson, G. H. (1999) Block copolymers – designer soft materials. Phys. Today 52, 3238.CrossRefGoogle Scholar
[4]Beck, M., Knobloch, J., Lloyd, D. J. B., Sandstede, B. & Wagenknecht, T. (2009) Snakes, ladders, and isolas of localized patterns. SIAM J. Math. Anal. 41 (3), 936972.CrossRefGoogle Scholar
[5]Bohbot-Raviv, Y. & Wang, Z.-G. (October 2000) Discovering new ordered phases of block copolymers. Phys. Rev. Lett. 85 (16), 34283431.CrossRefGoogle ScholarPubMed
[6]Budd, C. J., Hunt, G. W. & Kuske, R. (December 2001) Asymptotics of cellular buckling close to the Maxwell load. R. Soc. Lond. Proc. Seri. A 457, 29352964.CrossRefGoogle Scholar
[7]Chapman, S. J. & Kozyreff, G. (February 2009) Exponential asymptotics of localised patterns and snaking bifurcation diagrams. Phys. D Nonlinear Phenom. 238, 319354.CrossRefGoogle Scholar
[8]Choksi, R. & Ren, X. (2003) On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Statist. Phys. 113 (1–2), 151176.CrossRefGoogle Scholar
[9]Cross, M. C. & Hohenberg, P. C. (July 1993) Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 851.CrossRefGoogle Scholar
[10]Dawes, J. H. P. (July 2010) The emergence of a coherent structure for coherent structures: Localized states in nonlinear systems. R. Soc. Lond. Phil. Trans. Seri. A 368, 35193534.Google ScholarPubMed
[11]Dee, G. & Langer, J. S. (1983) Propagating pattern selection. Phys. Rev. Lett. 50, 383386.CrossRefGoogle Scholar
[12]Doelman, A., Kaper, T. J., & Eckhaus, W. (2000) Slowly modulated two-pulse solutions in the Gray–Scott model i: Asymptotic construction and stability. SIAM J. Appl. Math. 61 (3), 10801102.CrossRefGoogle Scholar
[13]Dormidontova, E. E. & Lodge, T. P. (2001) The order–disorder transition and the disordered micelle regime in sphere-forming block copolymer melts. Macromolecules 34 (26), 91439155.CrossRefGoogle Scholar
[14]Elphick, C., Meron, E. & Spiegel, E. A. (1990) Patterns of propagating pulses. SIAM J. Appl. Math. 50 (2), 490503.CrossRefGoogle Scholar
[15]Evans, L. C. (1998) Partial Differential Equations, American Mathematical Society, Providence, RI.Google Scholar
[16]Fredrickson, G. H. (2006) The Equilibrium Theory of Inhomogeneous Polymers, Oxford Science Publications, Clarendon Press, Oxford.Google Scholar
[17]Glasner, K. B. (2010) Spatially localized structures in diblock copolymer mixtures. SIAM J. Appl. Math. 70 (6), 20452074.CrossRefGoogle Scholar
[18]Hamley, I. W. (1998) The Physics of Block Copolymers, Oxford Science Publications, Clarendon Press, Oxford.CrossRefGoogle Scholar
[19]Hashimoto, T., Sakamoto, N. & Koga, T. (1996) Nucleation and growth of anisotropic grain in block copolymers near order–disorder transition. Phys. Rev. E 54 (5), 58325835.CrossRefGoogle ScholarPubMed
[20]Helfand, E. (1975) Theory of inhomogeneous polymers: Fundamentals of the Gaussian random-walk model. J. Chem. Phys. 62 (3), 9991005.CrossRefGoogle Scholar
[21]Hong, K. M. & Noolandi, J. (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14, 727736.CrossRefGoogle Scholar
[22]Ichiro, E. S., Nishiura, Y. & Ueda, K. I. (2001) 2n-splitting or edge-splitting? A manner of splitting in dissipative systems. Japan J. Ind. Appl. Math. 18, 181205. 10.1007/BF03168570.Google Scholar
[23]Kolokolnikov, T., Ward, M. J. & Wei, J. (2007) Self-replication of mesa patterns in reaction–diffusion systems. Phys. D: Nonlinear Phenom. 236 (2), 104122.CrossRefGoogle Scholar
[24]Leibler, L. (1980) Theory of microphase separation in block copolymers. Macromolecules 13, 16021617.CrossRefGoogle Scholar
[25]Maddocks, J. H. (December 1987) Stability and folds. Arch. Ration. Mech. Anal. 99, 301328.CrossRefGoogle Scholar
[26]Matsen, M. W. & Bates, F. S. (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29, 10911098.CrossRefGoogle Scholar
[27]Matsen, M. W. & Schick, M. (April 1994) Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 72 (16), 26602663.CrossRefGoogle ScholarPubMed
[28]Monasson, R. (October 1995) Structural glass transition and the entropy of the metastable states. Phys. Rev. Lett. 75, 28472850.CrossRefGoogle ScholarPubMed
[29]Nishiura, Y. & Ohnishi, I. (1995) Some mathematical aspects of the micro-phase separation of diblock copolymers. Phys. D 84, 3139.CrossRefGoogle Scholar
[30]Nishiura, Y. & Ueyama, D. (June 1999) A skeleton structure of self-replicating dynamics. Phys. D: Nonlinear Phenom. 130, 73104.CrossRefGoogle Scholar
[31]Ohta, T. & Kawasaki, K. (1986) Equilibrium morphology of block coploymer melts. Macromolecules 19, 26212632.CrossRefGoogle Scholar
[32]Ohta, T. & Kawasaki, K. (1990) Comment on the free energy functional of block copolymer melts in the strong segregation limit. Macromolecules 23, 24132414.CrossRefGoogle Scholar
[33]Painter, K. J., Maini, P. K. & Othmer, H. G. (May 1999) Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. 96, 55495554.CrossRefGoogle ScholarPubMed
[34]Park, M. J., Char, K., Lodge, T. P. & Kim, J. K. (2006) Transient solidlike behavior near the cylinder/disorder transition in block copolymer solutions. J. Chem Phys. 110, 1529515301.CrossRefGoogle ScholarPubMed
[35]Pearson, J. E. (July 1993) Complex patterns in a simple system. Science 261, 189192.CrossRefGoogle Scholar
[36]Pomeau, Y. (December 1986) Front motion, metastability and subcritical bifurcations in hydrodynamics. Phys. D: Nonlinear Phenom. 23, 311.CrossRefGoogle Scholar
[37]Reynolds, W. N., Pearson, J. E. & Ponce-Dawson, S. (April 1994) Dynamics of self-replicating patterns in reaction diffusion systems. Phys. Rev. Lett. 72, 27972800.CrossRefGoogle ScholarPubMed
[38]Sakamoto, N., Hashimoto, T., Han, C. D., Kim, D. & Vaidya, N. Y. (1997) Order–order and order–disorder transitions in a polystyrene–block–polyisoprene–block–polystyrene copolymer. Macromolecules 30 (6), 16211632.CrossRefGoogle Scholar
[39]Schwab, M. & Stühn, B. (February 1996) Thermotropic transition from a state of liquid order to a macrolattice in asymmetric diblock copolymers. Phys. Rev. Lett. 76, 924927.CrossRefGoogle ScholarPubMed
[40]Semenov, A. N. (1989) Microphase separation in diblock copolymer melts: Ordering of micelles. Macromolecules 22, 28492851.CrossRefGoogle Scholar
[41]Uneyama, T. & Doi, M. (2005) Calculation of the micellar structure of polymer surfactant on the basis of the density functional theory. Macromolecules 38 (13), 58175825.CrossRefGoogle Scholar
[42]Van Saarloos, W. (1988) Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37, 211229.CrossRefGoogle Scholar
[43]Wang, J., Wang, Z.-G. & Yang, Y. (2005) Nature of disordered micelles in sphere-forming block copolymer melts. Macromolecules 38 (5), 19791988.CrossRefGoogle Scholar
[44]Wang, X., Dormidontova, E. E. & Lodge, T. P. (2002) The order–disorder transition and the disordered micelle regime for poly(ethylenepropylene-b-dimethylsiloxane) spheres. Macromolecules 35 (26), 96879697.CrossRefGoogle Scholar
[45]Ward, M. J. (2001) Metastable dynamics and exponential asymptotics in multi-dimensional domains. Multiple-Time-Scale Dynamical Systems, IMA Volumes in Mathematics and its Applications, Springer, New York, pp. 233259.CrossRefGoogle Scholar
[46]Ward, M. J. & Reyna, L. G. (1995) Internal layers, small eigenvalues, and the sensitivity of metastable motion. SIAM J. Appl. Math. 55 (2), 425445.CrossRefGoogle Scholar
[47]Zhang, C.-Z. & Wang, Z.-G (March 2006) Random isotropic structures and possible glass transitions in diblock copolymer melts. Phys. Rev. E 73 (3), 031804.CrossRefGoogle ScholarPubMed