Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T12:06:36.921Z Has data issue: false hasContentIssue false

Goodness of fit test for isotonic regression

Published online by Cambridge University Press:  15 August 2002

Cécile Durot
Affiliation:
Laboratoire de statistiques, bâtiment 425, Université Paris-Sud, 91405 Orsay Cedex, France; Cecile.Durot@math.u-psud.fr.
Anne-Sophie Tocquet
Affiliation:
Laboratoire Statistique et Génome, 523 place des Terrasses de l'Agora, 91000 Evry, et Département de Mathématiques, Université d'Evry-Val-d'Essonne, boulevard F. Mitterrand, 91025 Evry Cedex, France; atocquet@maths.univ-evry.fr.
Get access

Abstract

We consider the problem of hypothesis testing within a monotoneregression model. We propose a new test of the hypothesisH 0: “ƒ = ƒ0 ” against the composite alternative H a : “ƒ ≠ ƒ0 ” under the assumption that the true regression functionf is decreasing. The test statistic is based on the ${\mathbb L}_{1}$ -distance between the isotonic estimator of f and thefunction f 0, since it is known that a properly centered and normalized version of this distance is asymptotically standardnormally distributed under H 0. We study the asymptotic powerof the test under alternatives that converge to the nullhypothesis.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.E. Barlow, D.J. Bartholomew, J.M. Bremmer and H.D. Brunk, Statistical Inference under Order Restrictions. Wiley (1972).
Barry, D. and Hartigan, J.A., An omnibus test for departures from constant mean. Ann. Statist. 18 (1990) 1340-1357. CrossRef
H.D. Brunk, On the estimation of parameters restricted by inequalities. Ann. Math. Statist. (1958) 437-454.
C. Durot, Sharp asymptotics for isotonic regression. Probab. Theory Relat. Fields (to appear).
Eubank, R.L. and Hart, J.D., Testing goodness of fit in regression via order selection criteria. Ann. Statist. 20 (1992) 1412-1425. CrossRef
Eubank, R.L. and Spiegelman, C.H., Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 (1990) 387-392. CrossRef
P. Groeneboom, Estimating a monotone density, edited by R.A. Olsen and L. Le Cam, in Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2. Wadsworth (1985) 539-554.
P. Groeneboom, Brownian motion with parabolic drift and airy functions. Probab. Theory Relat. Fields (1989) 79-109.
Hall, P., Kay, J.W. and Titterington, D.M., Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990) 521-528. CrossRef
Härdle, W. and Mammen, E., Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993) 1926-1947. CrossRef
Hart, J.D. and Wehrly, T.E., Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87 (1992) 1018-1024. CrossRef
L. Reboul, Estimation of a function under shape restrictions. Applications to reliability, Preprint. Université Paris XI, Orsay (1997).
D. Revuz and M. Yor, Continuous martingales and Brownian Motion. Springer-Verlag (1991).
Rice, J., Bandwidth choice for nonparametric regression. Ann. Statist. 4 (1984) 1215-1230. CrossRef
Rosenthal, H.P., On the subspace of l p , p>2, spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273-303. CrossRef
A.I. Sakhanenko, Estimates in the variance principle. Trudy. Inst. Mat. Sibirsk. Otdel (1972) 27-44.
Staniswalis, J.G. and Severini, T.A., Diagnostics for assessing regression models. J. Amer. Statist. Assoc. 86 (1991) 684-692. CrossRef
Stute, W., Nonparametric model checks for regression. Ann. Statist. 15 (1997) 613-641.
A.S. Tocquet, Construction et étude de tests en régression. 1. Correction du rapport de vraisemblance par approximation de Laplace en régression non-linéaire. 2. Test d'adéquation en régression isotonique à partir d'une asymptotique des fluctuations de la distance l 1, Ph.D. Thesis. Université Paris Sud, Orsay (1998).