Published online by Cambridge University Press: 11 July 2012
In the context of self-stabilizing processes, that is processes attracted by their ownlaw, living in a potential landscape, we investigate different properties of the invariantmeasures. The interaction between the process and its law leads to nonlinear stochasticdifferential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab.15 (2010) 2087–2116], the authors proved that, for linearinteraction and under suitable conditions, there exists a unique symmetric limit measureassociated to the set of invariant measures in the small-noise limit. The aim of thisstudy is essentially to point out that this statement leads to the existence, as the noiseintensity is small, of one unique symmetric invariant measure for the self-stabilizingprocess. Informations about the asymmetric measures shall be presented too. The main keyconsists in estimating the convergence rate for sequences of stationary measures usinggeneralized Laplace’s method approximations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.