Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T18:39:59.707Z Has data issue: false hasContentIssue false

Density Estimation for One-Dimensional Dynamical Systems

Published online by Cambridge University Press:  15 August 2002

Clémentine Prieur*
Affiliation:
Université de Cergy-Pontoise, Laboratoire de Mathématiques, bâtiment A4, Site Saint-Martin, 95011 Cergy-Pontoise Cedex, France; prieur@math.u-cergy.fr.
Get access

Abstract

In this paper we prove a Central Limit Theorem forstandard kernel estimates of the invariant density of one-dimensionaldynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergencefor the variance of the estimator and a variation on the Lindeberg–Riomethod. We also give an extension in the case of weaklydependent sequences in a sense introduced by Doukhan and Louhichi.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Amroun, Systèmes dynamiques perturbés. Sur une classe de fonctions zéta dynamiques, Thèse de Doctorat de l'Université Paris 6, Spécialité Mathématique (1995).
Ango Nze, P. and Doukhan, P., Non-parametric Minimax estimation in a weakly dependent framework I: Quadratic properties. Math. Methods Statist. 5-4 (1996) 404-423.
V. Baladi, M. Benedicks and V. Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps. Ann. E.N.S. (to appear).
A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180. CrossRef
Bosq, D. and Guégan, D., Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Statist. Probab. Lett. 25 (1995) 201-212. CrossRef
D. Bosq and J.P. Lecoutre, Théorie de l'estimation fonctionnelle. Collection ``Économie et statistiques avancées''. Série : École Nationale de la Statistique et de l'Administration Économique et Centre d'Études des Programmes Economiques''. Economica (1987).
A. Broise, F. Dal'bo and M. Peigné, Études spectrales d'opérateurs de transfert et applications. Astérisque 238 (1996) Société Math. de France.
P. Collet, Some ergodic properties of maps of the interval, in dynamical systems, edited by R. Bamon, J.M. Gambaudo and S. Martinez. Hermann, Paris (1996).
Coulon-Prieur, C. and Doukhan, P., A triangular central limit Theorem under a new weak dependence condition. Statist. Probab. Lett. 47 (2000) 61-68. CrossRef
W. De Melo and S. Van Strien, One-Dimensional Dynamics. Springer-Verlag (1993).
P. Doukhan, Mixing: Properties and Examples. Springer Verlag, Lecture Notes in Statist. 85 (1994).
P. Doukhan, Models, Inequalities and Limit Theorems for Stationary Sequences, edited by P. Doukhan, G. Oppenheim and M. Taqqu. Birkhaüser (to appear).
Doukhan, P. and Louhichi, S., A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. CrossRef
Doukhan, P. and Louhichi, S., Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28 (2001) 325-342. CrossRef
A. Lasota and M. Mackey, Probabilistic properties of deterministic systems. Cambridge University Press (1985).
Lasota, A. and Yorke, J.A., On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973) 481-488. CrossRef
Liverani, C., Decay of correlations for piecewise expanding maps. J. Statist. Phys. 78 (1995) 1111-1129. CrossRef
C. Liverani, Central limit Theorem for deterministic systems, in Proc. of the international Congress on Dynamical Systems, Montevideo 95. Pittman, Res. Notes Math. (1997).
J. Maës, Statistique non paramétrique des processus dynamiques réels en temps discret. Thèse de l'Université Paris 6 (1999).
D. Pollard, Convergence of Stochastic Processes. Springer Verlag, Springer Ser. Statist. (1984).
R. Prakasa, Nonparametric functional estimation. Academic Press, New York (1983).
Rio, E., About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. CrossRef
Rio, E., Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields 104 (1996) 255-282. CrossRef
Robinson, P.M., Non parametric estimators for time series. J. Time Ser. Anal. 4-3 (1983) 185-207. CrossRef
M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3 (1991).
W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974).
M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997).