Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:01:36.676Z Has data issue: false hasContentIssue false

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Published online by Cambridge University Press:  03 February 2012

Nikolaos Bournaveas
Affiliation:
Department of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK. N.Bournaveas@ed.ac.uk
Georgios E. Zouraris
Affiliation:
Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece; zouraris@math.uoc.gr
Get access

Abstract

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Alvarez, A., Linearized Crank-Nicholson scheme for nonlinear Dirac equations. J. Comput. Phys. 99 (1992) 348350. Google Scholar
Alvarez, A. and Carreras, B., Interaction dynamics for the solitary waves of a nonlinear Dirac model. Phys. Lett. A 86 (1981) 327332. Google Scholar
Alvarez, A., Kuo, Pen-Yu and Vazquez, L., The numerical study of a nonlinear one-dimensional Dirac equation. Appl. Math. Comput. 13 (1983) 115. Google Scholar
Bournaveas, N., Local and global solutions for a nonlinear Dirac system. Advances Differential Equations 9 (2004) 677698. Google Scholar
Bournaveas, N., Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension. Discrete Contin. Dyn. Syst. Ser. A 20 (2008) 605616. Google Scholar
Boussaid, N., D’Ancona, P. and Fanelli, L., Virial identity and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl. 95 (2011) 137150. Google Scholar
De Frutos, J., Estabilidad y convergencia de esquemas numericos para sistemas de Dirac no lineales. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenieria 5 (1989) 185202. Google Scholar
De Frutos, J. and Sanz-Serna, J.M., Split-step spectral schemes for nonlinear Dirac systems. J. Comput. Phys. 83 (1989) 407423. Google Scholar
Delgado, V., Global solutions of the Cauchy problem for the classical Coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension. Proc. Amer. Math. Soc. 69 (1978) 289296. Google Scholar
Dupont, T., Galerkin methods for first order hyperbolics : an example. SIAM J Numer. Anal. 10 (1973) 890899. Google Scholar
Glassey, R.T., On one-dimensional coupled Dirac equations. Trans. Amer. Math. Soc. 231 (1977) 531539. Google Scholar
Guo, B.-Y., Shen, J. and Xu, C.-L., Spectral and pseudospectral approximations using Hermite functions : application to the Dirac equation. Adv. Comput. Math. 19 (2003) 3555. Google Scholar
Hong, J. and Li, C., Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006) 448472. Google Scholar
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag (1997).
Jiménez, S., Derivation of the discrete conservation laws for a family of finite difference schemes. Appl. Math. Comput. 64 (1994) 1345. Google Scholar
Kato, T., Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967) 508520. Google Scholar
Machihara, S., One dimensional Dirac equation with quadratic nonlinearities. Discrete Contin. Dyn. Syst. Ser. A 13 (2005) 277290. Google Scholar
Machihara, S., Dirac equation with certain quadratic nonlinearities in one space dimension. Commun. Contemp. Math. 9 (2007) 421435. Google Scholar
Machihara, S., Nakamura, M. and Ozawa, T., Small global solutions for nonlinear Dirac equations. Differential Integral Equations 17 (2004) 623636. Google Scholar
Machihara, S., Nakamura, M., Nakanishi, K. and Ozawa, T., Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219 (2005) 120. Google Scholar
Machihara, S., Nakanishi, K. and Tsugawa, K., Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math. 50 (2010) 403451. Google Scholar
A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci. 53 (1984).
Salusti, E. and Tesei, A., On a semi-group approach to quantum field equations. Nuovo Cimento A 2 (1971) 122138. Google Scholar
Segal, I. E., Non-linear semi-groups. Ann. of Math. 78 (1963) 339364. Google Scholar
Shao, S. and Tang, H., Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 623640. Google Scholar
B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, Heidelberg (2010).
Wang, H. and Tang, H., An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J. Comput. Phys. 222 (2007) 176193. Google Scholar
Zouraris, G.E., On the convergence of a linear conservative two-step finite element method for the nonlinear Schrödinger equation. ESAIM : M2AN 35 (2001) 389405. Google Scholar