Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T14:46:16.775Z Has data issue: false hasContentIssue false

Splitting d'opérateur pour l'équation de transportneutronique en géométrie bidimensionnelle plane

Published online by Cambridge University Press:  15 April 2002

Samir Akesbi*
Affiliation:
Laboratoire de Mathématiques et Applications, Université de Haute-Alsace, 4 rue des frères Lumière, 68093 Mulhouse Cedex, France. (S.Akesbi@univ-mulhouse.fr)
Get access

Abstract

The aim of this work is to introduce and to analyze new algorithms for solving the transport neutronique equation in 2D geometry. These algorithms present the duplicate favors to be, on the one hand faster than some classic algorithms and easily to be implemented and naturally deviced for parallelisation on the other hand. They are based on a splitting of the collision operator holding amount of caracteristics of the transport operator. Some numerical results are given at the end of this work.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Akesbi, Accélération de la convergence par diffusion synthétique pour l'equation de transport. Thèse de l'université de Franche-Comté, n° 129 (1989).
Akesbi, S., Laydi, M.R. et Mokhtar-Kharroubi, M., Décomposition d'opérateurs et accélération de la convergence en neutronique. C.R. Acad. Sci. Paris Sér. I 319 (1994) 765-770.
Akesbi, S., Nicolet, M., Accélération de la convergence par relaxation en théorie du transport. C.R. Acad. Sci. Paris Sér. I 321 (1995) 637-640.
Akesbi, S. et Nicolet, M., Nouveaux algorithmes performants en théorie du transport. ESAIM: M2AN 32 (1998) 341-358. CrossRef
Akesbi, S. et Nicolet, M., Nouveaux algorithmes pour l'équation de transport en géométrie bidimensionnelle plane. C.R. Acad. Sci. Paris Sér. I 324 (1997) 699-706. CrossRef
Alcoofe, R.E., Diffusion synthetic acceleration method for the diamond-differenced discrete-ordinates equations. Nucl. Sci. and Eng. 64 (1977) 344-345. CrossRef
P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1982).
R. Kress, Linear integral equations. Springer-Verlag (1989).
Larsen, E.W., Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete-ordinates equations, Part I, Part II. Nucl. Sci. and Eng. 82 (1982) 47-63. CrossRef
I. Marek, Frobenius theory of positive operators, Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970).
Mokhtar-Kharroubi, M., On the approximation of a class of transport equations. Transport Theory Statist. Phys. 22 (1993) 561-570. CrossRef
P. Nelson, A Survey Convergence Results in Numerical Transport Theory, in: Com. Proceedings in honor of G.M. Wing's 65th birthday, Transport Theory, Invariant Imbedding, and Integral, P. Nelson et al. Eds. (1989).
Sanchez, R. et McCormick, N.J., A review of Neutron Transport Approximations. Nucl. Sci. and Eng. 80 (1982) 481-535. CrossRef
R.S. Varga, Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs, N.J. (1962).