Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:55:43.637Z Has data issue: false hasContentIssue false

A spectral study of an infinite axisymmetric elastic layer

Published online by Cambridge University Press:  15 April 2002

Lahcène Chorfi*
Affiliation:
Département de Mathématiques, Université Badji Mokhtar de Annaba, BP 12, 23000 Annaba, Algeria.
Get access

Abstract

We present here a theoretical study of eigenmodes inaxisymmetric elastic layers.The mathematical modelling allows us to bring this problem to a spectral studyof a sequence of unbounded self-adjoint operators A n , $n\in \mathbb{N}$ , in a suitableHilbert space. We show that the essential spectrum of A n is an interval oftype $[\gamma,+\infty[$ and that, under certain conditions on the coefficientsof the medium, the discrete spectrum is non empty.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamberger, A., Dermenjian, Y. and Joly, P., Mathematical analysis of the propagation of elastic guided waves in heterogeneous media. J. Differential Equations 88 (1990) 113-154. CrossRef
Bamberger, A., Joly, P. and Kern, M., Propagation of elastic surface waves along a cylindrical cavity of arbitrary cross section. RAIRO Modél. Math. Anal. Numér. 25 (1991) 1-30. CrossRef
Bouchon, M. and Schmitt, D.P., Full-wave acoustic logging in an irregular borehole. Geophysics 54 (1989) 758-765. CrossRef
Chorfi, L., Étude mathématique des modes guidés dans un milieu élastique à symétrie de révolution. RAIRO Modél. Math. Anal. Numér. 30 (1996) 299-342. CrossRef
D.J. Duterte, A.S. Bonnet-Ben Dhia and P. Joly, Mathematical analysis of elastic surface waves in topographic waveguides. M 3 AS (Math. Models Methods Appl. Sci.) 9 (1999) 755-798.
G. Duvaut, Mécanique des milieux continus. Masson, Paris (1990).
T. Kato, Perturbation Theory for Linear Operators. 2nd edn., Springer-Verlag, New York (1976).
J. Miklowitz, The Theory of Elastic Waves and Wave Guides. North-Holland Publishing Company, Amsterdam, New York, Oxford (1980).
Nitsche, J.A., Korn's, On second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. CrossRef
Nkemzi, B. and Heinrish, B., Partial Fourier approximation of the Lamé equation in axisymmetric domains. Math. Methods Appl. Sci. 22 (1999) 1017-1041. 3.0.CO;2-B>CrossRef
M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press, New York, San Francisco, London (1978).
M. Schechter, Operator Methods in Quantum Mechanics. North-Holland Publishing Company, Amsterdam, New York, Oxford (1981).
Winbow, G. A., Seismic sources in open cased boreholes. Geophysics 56 (1991) 1040-1050. CrossRef