Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:19:17.596Z Has data issue: false hasContentIssue false

A residual based A POSTERIORI error estimator for an augmented mixed finite element methodin linear elasticity

Published online by Cambridge University Press:  16 January 2007

Tomás P. Barrios
Affiliation:
Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
Gabriel N. Gatica
Affiliation:
GIMA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
María González
Affiliation:
Departamento de Matemáticas, Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain.
Norbert Heuer
Affiliation:
BICOM and Department of Mathematical Sciences, Brunel University, Uxbridge, UB8 3PH, UK.
Get access

Abstract

In this paper we develop a residual based a posteriori error analysis for an augmentedmixed finite element method applied to the problem of linear elasticity in the plane.More precisely, we derive a reliable and efficient a posteriori error estimator for thecase of pure Dirichlet boundary conditions. In addition, several numericalexperiments confirming the theoretical properties of the estimator, andillustrating the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution, are also reported.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, D.N., Brezzi, F. and Douglas, J., PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347367. CrossRef
Braess, D., Klaas, O., Niekamp, R., Stein, E. and Wobschal, F., Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Method. Appl. M. 127 (1995) 345356. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
Carstensen, C., A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465476. CrossRef
Carstensen, C. and Dolzmann, G., A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187209. CrossRef
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978).
Clément, P., Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 7784.
Douglas, J. and Wan, J., An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495508. CrossRef
Gatica, G.N., A note on the efficiency of residual-based a posteriori error estimators for some mixed finite element methods. Electronic Trans. Numer. Anal. 17 (2004) 218233.
Gatica, G.N., Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0$ approximations. ESAIM: M2AN 40 (2006) 128. CrossRef
Masud, A. and Hughes, T.J.R., A stabilized mixed finite element method for Darcy flow. Comput. Method. Appl. M. 191 (2002) 43414370. CrossRef
J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1) P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991).
Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 6783. CrossRef
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner (Chichester) (1996).