Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T19:52:31.185Z Has data issue: false hasContentIssue false

Residual and hierarchical a posteriori error estimatesfor nonconforming mixed finite element methods

Published online by Cambridge University Press:  15 December 2004

Linda El Alaoui
Affiliation:
CERMICS, École nationale des ponts et chaussées, 6 et 8, avenue Blaise Pascal, 77455 Marne la Vallée Cedex 2, France. elalaoui@cermics.enpc.fr.; ern@cermics.enpc.fr.
Alexandre Ern
Affiliation:
CERMICS, École nationale des ponts et chaussées, 6 et 8, avenue Blaise Pascal, 77455 Marne la Vallée Cedex 2, France. elalaoui@cermics.enpc.fr.; ern@cermics.enpc.fr.
Get access

Abstract

We analyze residual and hierarchicala posteriori error estimates for nonconforming finite elementapproximations of elliptic problems with variable coefficients.We consider a finite volume box scheme equivalent toa nonconforming mixed finite element method in a Petrov–Galerkinsetting. We prove thatall the estimators yield global upper and local lower bounds for the discretizationerror. Finally, we present results illustrating the efficiency of theestimators, for instance, in the simulation of Darcy flows throughheterogeneous porous media.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achchab, B., Achchab, S. and Agouzal, A., Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I 336 (2003) 95100. CrossRef
Achchab, B., Agouzal, A., Baranger, J. and Maitre, J.F., Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159179. CrossRef
Achdou, Y. and Bernardi, C., Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I 333 (2001) 693698. CrossRef
Achdou, Y., Bernardi, C. and Coquel, F., A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 1742. CrossRef
M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000).
Angermann, L., A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations 18 (2002) 241259. CrossRef
Arnold, D.N. and Brezzi, F., Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 732. CrossRef
Bank, R. and Smith, K., A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal. 30 (1991) 921935. CrossRef
Bank, R.E. and Weiser, A., Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283301. CrossRef
Becker, R., Hansbo, P. and Larson, M.G., Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192 (2003) 723733. CrossRef
C. Bernardi, private communication.
Bernardi, C. and Verfürth, R., Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579608. CrossRef
D. Braess, Finite elements. Cambridge Univ. Press (1997).
Carstensen, C., A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465476. CrossRef
Carstensen, C. and Funken, A., A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp. 70 (2000) 13531381. CrossRef
Courbet, B. and Croisille, J.-P., Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631649. CrossRef
Croisille, J.-P., Finite volume box schemes and mixed methods. ESAIM: M2AN 31 (2000) 10871106. CrossRef
Croisille, J.-P. and Greff, I., Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 8 (2002) 355373. CrossRef
Crouzeix, M. and Raviart, P.-A., Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 3 (1973) 3375.
Dari, E., Durán, R. and Parda, C., Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 10171033. CrossRef
Dari, E., Durán, R., Parda, C. and Vampa, V., A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér. 30 (1996) 385400. CrossRef
A. Ern and J.-L. Guermond, Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004).
Fortin, M. and Soulié, M., A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg. 19 (1983) 505520. CrossRef
Hoppe, R.H.W. and Wohlmuth, B., Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237263. CrossRef
John, V., A posteriori L 2-error estimates for the nonconforming P 1/P 0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99116. CrossRef
Kanschat, G. and Suttmeier, F.-T., A posteriori error estimates for non-conforming finite element schemes. Calcolo 36 (1999) 129141. CrossRef
Karakashian, O. and Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 23742399. CrossRef
P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math. 606 (1977).
Schieweck, F., A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN 36 (2002) 489503. CrossRef
Thomas, J.-M. and Trujillo, D., Mixed finite volume methods. Int. J. Num. Meth. Engrg. 46 (1999) 13511366. 3.0.CO;2-0>CrossRef
Verfürth, R., A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math. 60 (1991) 235249. CrossRef
R. Verfürth, A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996).
Wohlmuth, B.I. and Hoppe, R.H.W., A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp. 68 (1999) 13471378. CrossRef