Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:47:06.555Z Has data issue: false hasContentIssue false

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

Published online by Cambridge University Press:  15 June 2005

François Beux
Affiliation:
Scuola Normale Superiore di Pisa, Italy. fbeux@sns.it; e.sinibaldi@sns.it
Maria-Vittoria Salvetti
Affiliation:
Dipartimento di Ingegneria Aerospaziale, Università di Pisa, Italy. mv.salvetti@ing.unipi.it
Alexey Ignatyev
Affiliation:
Institute for High Performance Computing and Data Bases, St.Petersburg State Polytechnical University, Russia. iaa@gtn.ru
Ding Li
Affiliation:
Mechanical Engineering, Purdue University, USA. dli@purdue.edu; merkle@purdue.edu
Charles Merkle
Affiliation:
Mechanical Engineering, Purdue University, USA. dli@purdue.edu; merkle@purdue.edu
Edoardo Sinibaldi
Affiliation:
Scuola Normale Superiore di Pisa, Italy. fbeux@sns.it; e.sinibaldi@sns.it
Get access

Abstract

The results of a workshop concerning the numericalsimulation of the liquid flow around a hydrofoil in non-cavitating andcavitating conditions are presented. This workshop was part of theconference “Mathematical and Numerical aspects of Low Mach NumberFlows” (2004) and was aimed to investigate the capabilities ofdifferent compressible flow solvers for the low Mach number regime and forflows in which incompressible and supersonic regions aresimultaneously present. Different physical models of cavitatingphenomena are also compared. The numerical results are validatedagainst experimental data.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Baston, M. Lucchesini, L. Manfriani, L. Polito and G. Lombardi, Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618–628.
L. d'Agostino, E. Rapposelli, C. Pascarella and A. Ciucci, A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8–11 (2001).
M. Deshpande, J. Feng and C. Merkle, Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149–155.
Glaister, P., Riemann Solver, A for barotropic flow. J. Comput. Phys. 93 (1991) 477480. CrossRef
Guillard, H. and Viozat, C., On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 6386. CrossRef
Jiang, G. and Shu, C., Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202228. CrossRef
D. Li and C. Merkle, Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10–14 (2000).
D. Li, G. Xia and C. Merkle, Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted.
D. Li, S. Venkateswaran, K. Fakhari and C. Merkle, Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001).
S. Pandya, S. Venkateswaran and T. Pulliam, Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003).
E. Rapposelli, A. Cervone, C. Bramanti and L. d'Agostino, Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6–11 (2003).
Roe, P.L., Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357372. CrossRef
E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003).
E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24–28 (2004).
Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277298. CrossRef
S. Venkateswaran and C. Merkle, Analysis of preconditioning methods for Euler and Navier-Stokes equations. $30{\rm th}$ VKI computational fluid dynamics lecture series (1999).
S. Venkateswaran, D. Li and C. Merkle, Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003).
D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998).