Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T02:07:12.724Z Has data issue: false hasContentIssue false

Convergence of some adaptive FEM-BEM coupling for elliptic butpossibly nonlinear interface problems

Published online by Cambridge University Press:  13 February 2012

Markus Aurada
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria. Markus.Aurada@tuwien.ac.at; Michael.Feischl@tuwien.ac.at; Dirk.Praetorius@tuwien.ac.at
Michael Feischl
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria. Markus.Aurada@tuwien.ac.at; Michael.Feischl@tuwien.ac.at; Dirk.Praetorius@tuwien.ac.at
Dirk Praetorius
Affiliation:
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria. Markus.Aurada@tuwien.ac.at; Michael.Feischl@tuwien.ac.at; Dirk.Praetorius@tuwien.ac.at
Get access

Abstract

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear)interface problem for the 2D Laplacian. We introduce some new a posteriorierror estimators based on the (h − h/2)-errorestimation strategy. In particular, these include the approximation error for the boundarydata, which allows to work with discrete boundary integral operators only. Using theconcept of estimator reduction, we prove that the proposed adaptive algorithm isconvergent in the sense that it drives the underlying error estimator to zero. Numericalexperiments underline the reliability and efficiency of the considered adaptivemesh-refinement.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience, John Wiley & Sons, New-York (2000).
M. Aurada, P. Goldenits and D. Praetorius, Convergence of data perturbed adaptive boundary element methods. ASC Report 40/2009, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien (2009).
M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr and D. Praetorius, HILBERT – A Matlab implementation of adaptive 2D-BEM. ASC Report 24/2011, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien (2011). Software download at http://www.asc.tuwien.ac.at/abem/hilbert/.
M. Aurada, S. Ferraz-Leite and D. Praetorius, Estimator reduction and convergence of adaptive BEM. Appl. Numer. Math., in print (2011).
Babuśka, I. and Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75102. Google Scholar
Bank, R., Hierarchical bases and the finite element method. Acta Numer. 5 (1996) 145. Google Scholar
Bornemann, F., Erdmann, B. and Kornhuber, R., A-posteriori error-estimates for elliptic problems in 2 and 3 space dimensions. SIAM J. Numer. Anal. 33 (1996) 11881204. Google Scholar
Carstensen, C., An a posteriori error estimate for a first-kind integral equation. Math. Comp. 66 (1997) 139155. Google Scholar
Carstensen, C. and Praetorius, D., Averaging techniques for the effective numerical solution of Symm’s integral equation of the first kind. SIAM J. Sci. Comput. 27 (2006) 12261260. Google Scholar
Carstensen, C. and Praetorius, D., Averaging techniques for the a posteriori BEM error control for a hypersingular integral Equation in two dimensions. SIAM J. Sci. Comput. 29 (2007) 782810. Google Scholar
Carstensen, C. and Praetorius, D., Averaging techniques for a posteriori error control in finite element and boundary element analysis, in Boundary Element Analysis : Mathematical Aspects and Applications, edited by M. Schanz and O. Steinbach. Lect. Notes Appl. Comput. Mech. 29 (2007) 2959. Google Scholar
C. Carstensen and D. Praetorius, Convergence of adaptive boundary element methods. ASC Report 15/2009, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien (2009).
Carstensen, C. and Stephan, E., Adaptive coupling of boundary elements and finite elements. ESAIM : M2AN 29 (1995) 779817. Google Scholar
M. Costabel, A symmetric method for the coupling of finite elements and boundary elements, in The Mathematics of Finite Elements and Applications IV, MAFELAP 1987, edited by J. Whiteman, Academic Press, London (1988) 281–288.
Deuflhard, P., Leinen, P. and Yserentant, H., Concepts of an adaptive hierarchical finite element code. Impact Comput. Sci. Eng. 1 (1989) 335. Google Scholar
Dörfler, W., A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 11061124. Google Scholar
Dörfler, W. and Nochetto, R., Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 112. Google Scholar
Erath, C., Ferraz-Leite, S., Funken, S. and Praetorius, D., Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl. Numer. Math. 59 (2009) 27132734. Google Scholar
C. Erath, S. Funken, P. Goldenits and D. Praetorius, Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D. ASC Report 20/2009, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien (2009).
Ferraz-Leite, S. and Praetorius, D., Simple a posteriori error estimators for the h-version of the boundary element method. Computing 83 (2008) 135162. Google Scholar
Ferraz-Leite, S., Ortner, C. and Praetorius, D., Convergence of simple adaptive Galerkin schemes based on hh / 2 error estimators. Numer. Math. 116 (2010) 291316. Google Scholar
Graham, I., Hackbusch, W. and Sauter, S., Finite elements on degenerate meshes : Inverse-type inequalities and applications. IMA J. Numer. Anal. 25 (2005) 379407. Google Scholar
E. Hairer, S. Nørsett and G. Wanner, Solving ordinary differential equations I, Nonstiff problems. Springer, New York (1987).
Maischak, M., Mund, P. and Stephan, E., Adaptive multilevel BEM for acoustic scattering. Comput. Methods Appl. Mech. Eng. 150 (2001) 351367. Google Scholar
W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000).
Morin, P., Siebert, K. and Veeser, A., A Basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707737. Google Scholar
Mund, P. and Stephan, E., An additive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36 (1999) 10011021. Google Scholar
Mund, P., Stephan, E. and Weiße, J., Two-level methods for the single layer potential in R3. Computing 60 (1998) 243266. Google Scholar
S. Rjasanov and O. Steinbach, The fast solution of boundary integral equations. Springer, New York (2007).
S. Sauter and C. Schwab, Randelementmethoden : Analyse, Numerik und Implementierung schneller Algorithmen. Teubner Verlag, Wiesbaden (2004).
O. Steinbach, Numerical approximation methods for elliptic boundary value problems : Finite and boundary elements. Springer, New York (2008).
R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner, Stuttgart (1996).
E. Zeidler, Nonlinear functional analysis and its applications. part II/B, Springer, New York (1990).