Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T14:58:23.167Z Has data issue: false hasContentIssue false

Analysis of the accuracy and convergence of equation-free projection to a slow manifold

Published online by Cambridge University Press:  08 July 2009

Antonios Zagaris
Affiliation:
Department of Mathematics, University of Amsterdam, Amsterdam, The Netherlands. Modeling, Analysis and Simulation, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
C. William Gear
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA. NEC Laboratories USA, retired.
Tasso J. Kaper
Affiliation:
Department of Mathematics and Center for BioDynamics, Boston University, Boston, MA 02215, USA. tasso@math.bu.edu
Yannis G. Kevrekidis
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA. Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA.
Get access

Abstract

In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris,SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732],we developeda class of iterative algorithmswithin the contextof equation-free methodsto approximatelow-dimensional,attracting,slow manifoldsin systemsof differential equationswith multiple time scales.For user-specified valuesof a finite numberof the observables,the mth memberof the classof algorithms( $m = 0, 1, \ldots$ )finds iterativelyan approximationof the appropriate zeroof the (m+1)st time derivativeof the remaining variablesanduses this rootto approximate the locationof the pointon the slow manifoldcorresponding to these valuesof the observables.This articleis the firstof two articlesin whichthe accuracy and convergenceof the iterative algorithmsare analyzed.Here,we work directlywith fast-slow systems,in which there isan explicit small parameter, ε,measuring the separationof time scales.We show that,for each $m = 0, 1, \ldots$ ,the fixed pointof the iterative algorithmapproximates the slow manifoldup to and includingterms of ${\mathcal O}(\varepsilon^m)$ .Moreover,for each m,we identify explicitlythe conditionsunder whichthe mth iterative algorithmconverges to this fixed point.Finally,we show thatwhenthe iterationis unstable(orconverges slowly)it may be stabilized(orits convergencemay be accelerated)by applicationof the Recursive Projection Method.Alternatively,the Newton-KrylovGeneralized Minimal Residual Methodmay be used.In the subsequent article,we will considerthe accuracy and convergenceof the iterative algorithmsfor a broader classof systems – in whichthere need not bean explicitsmall parameter – to whichthe algorithms also apply.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Browning, G. and Kreiss, H.-O., Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704718. CrossRef
J. Carr, Applications of Centre Manifold Theory, Applied Mathematical Sciences 35. Springer-Verlag, New York (1981).
Curry, J., Haupt, S.E. and Limber, M.E., Low-order modeling, initializations, and the slow manifold. Tellus 47A (1995) 145161. CrossRef
Fenichel, N., Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31 (1979) 5398. CrossRef
Gear, C.W. and Kevrekidis, I.G., Constraint-defined manifolds: a legacy-code approach to low-dimensional computation. J. Sci. Comp. 25 (2005) 1728. CrossRef
Gear, C.W., Kaper, T.J., Kevrekidis, I.G. and Zagaris, A., Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711732. CrossRef
Girimaji, S.S., Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82 (1999) 22822285. CrossRef
C.K.R.T. Jones, Geometric singular perturbation theory, in Dynamical Systems, Montecatini Terme, L. Arnold Ed., Lecture Notes Math. 1609, Springer-Verlag, Berlin (1994) 44–118.
Kaper, H.G. and Kaper, T.J., Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165 (2002) 6693. CrossRef
C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers In Applied Mathematics 16. SIAM Publications, Philadelphia (1995).
Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O. and Theodoropoulos, C., Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715762.
Kreiss, H.-O., Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16 (1979) 980998. CrossRef
H.-O. Kreiss, Problems with Different Time Scales, in Multiple Time Scales, J.H. Brackbill and B.I. Cohen Eds., Academic Press (1985) 29–57.
Lorenz, E.N., Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37 (1980) 16851699. 2.0.CO;2>CrossRef
Maas, U. and Pope, S.B., Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239264. CrossRef
P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986).
Shroff, G.M. and Keller, H.B., Stabilization of unstable procedures: A recursive projection method. SIAM J. Numer. Anal. 30 (1993) 10991120. CrossRef
P. van Leemput, W. Vanroose and D. Roose, Initialization of a Lattice Boltzmann Model with Constrained Runs. Report TW444, Catholic University of Leuven, Belgium (2005).
van Leemput, P., Vandekerckhove, C., Vanroose, W. and Roose, D., Accuracy of hybrid Lattice Boltzmann/Finite Difference schemes for reaction-diffusion systems. Multiscale Model. Sim. 6 (2007) 838857. CrossRef
Zagaris, A., Kaper, H.G. and Kaper, T.J., Analysis of the Computational Singular Perturbation reduction method for chemical kinetics. J. Nonlin. Sci. 14 (2004) 5991. CrossRef
Zagaris, A., Kaper, H.G. and Kaper, T.J., Fast and slow dynamics for the Computational Singular Perturbation method. Multiscale Model. Sim. 2 (2004) 613638. CrossRef
A. Zagaris, C. Vandekerckhove, C.W. Gear, T.J. Kaper and I.G. Kevrekidis, Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Numer. Math. (submitted).