Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:37:18.343Z Has data issue: false hasContentIssue false

More pressure in the finite element discretizationof the Stokes problem

Published online by Cambridge University Press:  15 April 2002

Christine Bernardi
Affiliation:
Analyse Numérique, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. (bernardi@ann.jussieu.fr)
Frédéric Hecht
Affiliation:
Analyse Numérique, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. (bernardi@ann.jussieu.fr)
Get access

Abstract

For the Stokes problem in a two- or three-dimensionalbounded domain, we propose a new mixed finite element discretization which relies ona nonconforming approximation of the velocity and a more accurate approximation of thepressure. We prove that the velocity and pressure discrete spaces are compatible, in thesense that they satisfy an inf-sup condition of Babuška and Brezzi type, and wederive some error estimates.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958).
Babuska, I., The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. CrossRef
C. Bergé, Théorie des graphes. Dunod, Paris (1970).
Boland, J. and Nicolaides, R., Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. CrossRef
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér. 8 R2 (1974) 129-151.
P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351.
P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).
M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér. 7 R3 (1973) 33-76.
P. Emonot, Méthodes de volumes éléments finis: application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).
M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér. 11 R3 (1977) 341-354.
V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986).
F. Hecht, Construction d'une base d'un élément fini P 1 non conforme à divergence nulle dans $\mathbb{R}^3$ . Thesis, Université Pierre et Marie Curie, Paris (1980).
Hecht, F., Construction d'une base de fonctions P 1 non conforme à divergence nulle dans $\mathbb{R}^3$ . RAIRO - Anal. Numér. 15 (1981) 119-150. CrossRef
Verfürth, R., Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér. 18 (1984) 175-182. CrossRef