Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:02:37.042Z Has data issue: false hasContentIssue false

The mathematical theory of low Mach number flows

Published online by Cambridge University Press:  15 June 2005

Steven Schochet*
Affiliation:
School of Mathematical Sciences, Tel Aviv University. schochet@post.tau.ac.il
Get access

Abstract

The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear.
Alì, G., Low Mach number flows in time-dependent domains. SIAM J. Appl. Math. 63 (2003) 20202041. CrossRef
Asano, K., On the incompressible limit of the compressible euler equation. Japan J. Appl. Math. 4 (1987) 455488. CrossRef
Bayly, B.J., Levermore, C.D. and Passot, T., Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945954. CrossRef
Bresch, D., Desjardins, B., Grenier, E. and Lin, C.-K., Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125149. CrossRef
Browning, G. and Kreiss, H.-O., Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704718. CrossRef
Browning, G., Kasahara, A. and Kreiss, H.-O., Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci. 37 (1980) 14241436.
Cheverry, C., Justification de l'optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J. 87 (1997) 213263. CrossRef
Chorin, A., A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1967) 1226. CrossRef
Danchin, R., Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124 (2002) 11531219. CrossRef
Desjardins, B. and Grenier, E., Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 22712279. CrossRef
Desjardins, B., Grenier, E., Lions, P.-L. and Masmoudi, N., Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461471. CrossRef
Dutrifoy, A. and Hmidi, T., The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris 336 (2003) 471474. CrossRef
Ebin, D., The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1977) 141200. CrossRef
Ebin, D., Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35 (1982) 451485. CrossRef
Gallagher, I., Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363384. CrossRef
Gustafsson, B. and Stoor, H., Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal. 28 (1991) 15231547. CrossRef
Hagstrom, T. and Lorenz, J., All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652672. CrossRef
Hagstrom, T. and Lorenz, J., On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51 (2002) 13391387. CrossRef
Hoff, D., The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543554. CrossRef
Iguchi, T., The incompressible limit and the initial layer of the compressible Euler equation in $R\sp n\sb +$ . Math. Methods Appl. Sci. 20 (1997) 945958. 3.0.CO;2-T>CrossRef
Isozaki, H., Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381 (1987) 136.
Isozaki, H., Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys. 110 (1987) 519524. CrossRef
Isozaki, H., Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26 (1989) 399410.
Joly, J.-L., Métivier, G. and Rauch, J., Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4) 28 (1995) 51113. CrossRef
Joly, J.-L., Métivier, G. and Rauch, J., Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser. 391 (1998) 134166.
Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975) 181205. CrossRef
Klainerman, S. and Majda, A., Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481524. CrossRef
Klainerman, S. and Majda, A., Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629653. CrossRef
Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213237. CrossRef
Klein, R., Botta, N., Schneider, T., Munz, C.-D., Roller, S., Meister, A., Hoffmann, L. and Sonar, T., Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261343. CrossRef
Kreiss, H.-O., Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33 (1980) 399439. CrossRef
Lin, C.K., On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations 20 (1995) 677707. CrossRef
P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996).
Lions, P.-L. and Masmoudi, N., Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585627. CrossRef
Lions, P.-L. and Masmoudi, N., Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 387392. CrossRef
Meister, A., Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (2000) 256271. CrossRef
Métivier, G. and Schochet, S., The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 6190. CrossRef
Métivier, G. and Schochet, S., Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106183.
Müller, B., Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math. 34 (1998) 97109. CrossRef
M. Schiffer, Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1–161.
Schochet, S., The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104 (1986) 4975. CrossRef
Schochet, S., Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations 75 (1988) 127. CrossRef
Schochet, S., Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476512. CrossRef
Secchi, P., On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2 (2000) 107125. CrossRef
Sideris, T., The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J. 40 (1991) 535550. CrossRef
Sirovich, L., Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids 10 (1967) 2434. CrossRef
R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977).
Ukai, S., The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U. 26 (1986) 323331. CrossRef
van der Gulik, P.S., The linear pressure dependence of the viscosity at high densities. Physica A 256 (1998) 3956. CrossRef
M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964).
Zank, G.P. and Matthaeus, W.H., The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3 (1991) 6982. CrossRef