Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:04:46.376Z Has data issue: false hasContentIssue false

Static Hedging of Barrier Options with a Smile: An Inverse Problem

Published online by Cambridge University Press:  15 August 2002

Claude Bardos
Affiliation:
Université de Paris VII and C.M.L.A., URA 1611 du CNRS, École Normale Supérieure de Cachan, France.
Raphaël Douady
Affiliation:
C.M.L.A. 1611 URA du CNRS, École Normale Supérieure de Cachan, France; Raphael@clearingrisk.com.
Andrei Fursikov
Affiliation:
Moscow State University. Partially supported by CNRS while visiting the Emile Borel Center, and by R.F.B.I. under grant 96-01-00947.
Get access

Abstract

Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0<x_{0}<x_{1},$ we seek a function u with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution y satisfies: \[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \] We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \{0\}}$ can be C0-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Andersen, J. Andreasen and D. Eliezer, Static Replication of Barrier Options: Some General Results. Preprint Gen. Re Fin. Prod. (2000).
Avellaneda, M. and Paras, A., Managing the Volatility Risk of Portfolio of Derivative Securities: The Lagrangian Uncertain Volatility Model. Appl. Math. Finance 3 (1996) 21-52. CrossRef
C. Bardos, R. Douady and A. Fursikov, Static Hedging of Barrier Options with a Smile: An Inverse Problem, Preprint CMLA No. 9810. École Normale Supérieure de Cachan (1998).
Black, F. and Scholes, M., The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 81 (1973) 637-654. CrossRef
P. Carr and A. Chou, Breaking Barriers. RISK (1997) 139-145.
P. Carr, K. Ellis and V. Gupta, Static Hedging of Exotic Options. J. Finance (1998) 1165-1190.
Davis, M.H., Panas, V.G. and Zariphopoulou, T., European Option Pricing with Transaction Costs. SIAM J. Control Optim. 3 (1993) 470-493. CrossRef
E. Derman and I. Kani, Riding on a Smile. Risk Mag. (1994) 32-39.
Derman, E. and Kani, I., Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theor. Appl. Finance 1 (1998) 61-110. CrossRef
Douady, R., Closed Form Formulas for Exotic Options and their Lifetime Distribution. Int. J. Theor. Appl. Finance 2 (1998) 17-42. CrossRef
N. Dubourg, Couverture dynamique en présence d'imperfections, Ph.D. Thesis. Univ. Paris I (1997).
B. Dupire, Pricing and Hedging with Smiles in Mathematics of Derivative Securities, edited by M.A.H. Dempster and S.R. Pliska. Cambridge Univ. Press, Cambridge (1997) 103-111.
B. Dupire, A Unified Theory of Volatility, Preprint. Paribas Capital Markets (1995).
A. Friedman, Partial differential equations of parabolic type. Prentice-hall, Inc. Englewood Cliffs, N.Y. (1964).
Fursikov, A.V., Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl. 71 (1992) 139-194.
Fursikov, A.V. and Imanuvilov, O.Yu., On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232. CrossRef
A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Math. Sbornik. 187 (1996).
L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963).
N. El Karoui, Évaluation et couverture des options exotiques, Working paper. Univ. Paris VI (1997).
R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Dunod, Paris (1967).
Merton, R.C., Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183. CrossRef
J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968).
M. Rubinstein, Exotic Options, Finance Working Paper No. 220. U.C. Berkeley (1991).
Shorygin, P.O., On the Controllability Problem Arising in Financial Mathematics. J. Dynam. Control. Syst. 6 (2000) 353-363. CrossRef
N. Taleb, Dynamic Hedging: Managing Vanilla and Exotic Options. J. Wiley & Sons, New York (1997).
Tataru, D., Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367-408.
M.E. Taylor, Partial Differential Equations II. Springer-Verlag, Berlin (1991). Related papers not cited in the article
P. Acworth, Pricing and Hedging Barrier and Forward Start Options Using Static Replication, Working paper. ING Barings (1997).
S. Allen and O. Padovani, Risk Management Using Static Hedging, Working paper. Courant Institute, N.Y.U. (2001).
L. Andersen and J. Andreasen, Static Barriers. RISK (2000) 120-122.
S. Aparicio and L. Clewlow, A Comparison of Alternative Methods for Hedging Exotic Options, Working paper. FORC (1997).
A. Bhandari, Static Hedging: A Genetic Algorithms Approach. Working paper (1999).
J. Bowie and P. Carr, Static Simplicity. RISK (1994) 44-50.
Brown, H., Hobson, D. and Rogers, C., Robust Hedging of Barrier Options. Math. Finance 11 (2000) 285-314. CrossRef
P. Carr and J. Picron, Static Hedging of Timing Risk. J. Derivatives (1999) 57-66.
P. Carr and A. Chou, Static Hedging of Complex Barrier Options, Working paper. Courant Institute, N.Y.U. (1998).
A. Chou and G. Grigoriev, A Uniform Approach to Static Replication. J. Risk Fall (1998) 73-86.
M. Davis, W. Schachermayer and R. Tompkins, Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options, Working paper. Tech. Univ. Vienna, Austria (2000).
E. Derman, D. Ergener and I. Kani, Forever Hedged RISK (1995) 139-145.
Derman, E., Ergener, D. and Kani, I., Static Option Replication. J. Derivatives 2 (1995) 78-85. CrossRef
N. El Karoui and M. Jeanblanc-Piqué Exotic Options Without Mathematics, Working paper. Univ. Paris VII (1997).
E. Haug, First...Then...Knock-out Options. Wilmott Mag. (2001).
E. Haug, Barrier Put-Call Transformations, Working paper. Paloma Partners (1999).
E. Herzfeld and H. Konishi, Static Replication of Interest Rate Contingent Claims, Master Thesis. M.I.T. (1997).
Hobson, D., Robust Hedging of the Lookback Option. Finance and Stochastics 2 (1998) 329-347. CrossRef
P. Jaeckel and R. Rebonato, An Efficien and General Method to Value American-style Equity and FX Options in the Presence of User-defined Smiles and Time-dependent Volatility, Working paper. NatWest (1999).
G. Koutmos, Financial Risk Management: Dynamic vs. Static Hedging. Global Bus. Econ. Rev. I (1999) 60-75.
G. Peccati, A Time-space Hedging Theory, Working paper. Univ. Paris VI (2001).
A. Sbuelz, A General Treatment of Barrier Options and Semi-static Hedges of Double Barrier Options, Working paper. Tilburg Univ. (2000).
A. Sbuelz, Semi-static Hedging of Double Barrier Options, Working paper. Tilburg Univ. (2000).
B. Thomas, Exotic Options II in Handbbok of Risk Management, Chap. 4, edited by C. Alexander (1998).
H. Thomsen, Barrier Options: Evaluation and Hedging, Dissertation. Aarhus Univ. (1998).
K. Toft and C. Xuan, How Well Can Barrier Options be Hedged by a Static Portfolio of Standard Options? J. Fin. Engrg. 7 (1998) 147-175.
Tompkins, R., Static vs. Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation. Net Exposure 2 (1997) 1-36.