Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:24:02.871Z Has data issue: false hasContentIssue false

On the controllability and stabilization ofthe linearized Benjamin-Ono equation

Published online by Cambridge University Press:  15 March 2005

Felipe Linares
Affiliation:
IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brasil; linares@impa.br
Jaime H. Ortega
Affiliation:
Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Matemática, Casilla 170/3, Correo 3, Santiago, Chile. Departamento de Ciencias Básicas, Universidad del Bío-Bío, Avda. Andrés Bello s/n, Casilla 447, Chillán, Chile; jortega@dim.uchile.cl
Get access

Abstract

In this work we are interested in the study of controllability andstabilization of the linearized Benjamin-Ono equation withperiodic boundary conditions, which is a generic model forthestudy of weakly nonlinear waves with nonlocal dispersion. It iswell known that theBenjamin-Ono equation has infinite number ofconserved quantities, thus we consider only controls acting in theequation such that the volume of the solution is conserved. Westudy also the stabilization with a feedback law which gives us anexponential decay of the solutions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelouhab, M., Bona, J.L., Felland, M. and Saut, J.-C., Nonlocal models for nonlinear, dispersive waves. Physica D 40 (1989) 360392. CrossRef
Ablowitz, M.J. and Fokas, A.S., The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems. Stud. Appl. Math. 68 (1983) 110.
Benjamin, T.B., Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559592. CrossRef
Bona, J. and Winther, R., The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 10561106. CrossRef
Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3 (1993) 107156, 209–262. CrossRef
Case, K.M., Benjamin-Ono related equations and their solutions. Proc. Nat. Acad. Sci. USA 76 (1979) 13. CrossRef
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998).
Colliander, J. and Kenig, C.E., The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differential Equations 27 (2002) 21872266. CrossRef
Danov, K.D. and Ruderman, M.S., Nonlinear waves on shallow water in the presence of a horizontal magnetic field. Fluid Dynamics 18 (1983) 751756. CrossRef
Ingham, A.E., A further note on trigonometrical inequalities. Proc. Cambridge Philos. Soc. 46 (1950) 535537. CrossRef
Iorio, R., On the Cauchy problem for the Benjamin-Ono equation. Comm. Partial Differentiel Equations 11 (1986) 10311081. CrossRef
Ishimori, Y., Solitons in a one-dimensional Lennard/Mhy Jones lattice. Progr. Theoret. Phys. 68 (1982) 402410. CrossRef
Kenig, C.E. and Koenig, K., On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10 (2003) 879895. CrossRef
Kenig, C.E., Ponce, G. and Vega, L., A bilinear estimate with application to the KdV equation. J. Amer. Math Soc. 9 (1996) 573603. CrossRef
Koch, H. and Tzvetkov, N., On the local well-posedness of the Benjamin-Ono equation in $H\sp s({\mathbb R})$ . Int. Math. Res. Not. 26 (2003) 14491464. CrossRef
Matsuno, Y. and Kaup, D.J., Initial value problem of the linearized Benjamin-Ono equation and its applications. J. Math. Phys. 38 (1997) 51985224. CrossRef
Micu, S., On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 16771696. CrossRef
Ono, H., Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 10821091. CrossRef
A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983).
Perla-Menzala, G., Vasconcellos, F. and Zuazua, E.. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111129. CrossRef
Ponce, G., On the global well-posedness of the Benjamin-Ono equation. Diff. Integral Equations 4 (1991) 527542.
Rosier, L., Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 3355. CrossRef
Russell, D.L. and Zhang, B.-Y., Controllability and stabilizability of the third order linear dispersion equation on a periodic domain. SIAM J. Cont. Optim. 31 (1993) 659676. CrossRef
Russell, D.L. and Zhang, B.-Y., Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 36433672. CrossRef
T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb R)$ , preprint (2003).