Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:01:07.391Z Has data issue: false hasContentIssue false

Nash equilibrium for a multiobjective control problem related to wastewater management

Published online by Cambridge University Press:  23 January 2009

Néstor García-Chan
Affiliation:
Departamento de Matemática Aplicada, Universidad de Santiago de Compostela, Facultad de Matemáticas, 15782 Santiago de Compostela, Spain. netog_g@hotmail.com; rafams@usc.es
Rafael Muñoz-Sola
Affiliation:
Departamento de Matemática Aplicada, Universidad de Santiago de Compostela, Facultad de Matemáticas, 15782 Santiago de Compostela, Spain. netog_g@hotmail.com; rafams@usc.es
Miguel Ernesto Vázquez-Méndez
Affiliation:
Departamento de Matemática Aplicada, Universidad de Santiago de Compostela, Escola Politécnica Superior, 27002 Lugo, Spain. ernesto@usc.es
Get access

Abstract

This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of aparabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Numerical convergence for a sewage disposal problem. Appl. Math. Model. 25 (2001) 10151024.
Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Numerical optimization for the location of wastewater outfalls. Comput. Optim. Appl. 22 (2002) 399417. CrossRef
Álvarez-Vázquez, L.J., Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Mathematical model for optimal control in wastewater discharges: the global performance. C. R. Biologies 328 (2005) 327336.
Álvarez-Vázquez, L.J., Martínez, A., Muñoz-Sola, R., Rodríguez, C. and Vázquez-Méndez, M.E., The water conveyance problem: Optimal purification of polluted waters. Math. Models Meth. Appl. Sci. 15 (2005) 13931416.
A. Bermúdez, Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994).
Bermúdez, A., Rodríguez, C. and Vilar, M.A., Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 7997. CrossRef
Casas, E., Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 12971327. CrossRef
R. Gibbons, A Primer in Game Theory. Pearson Higher Education (1992).
O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence (1968).
J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968).
J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod, Paris (1968).
Martínez, A., Rodríguez, C. and Vázquez-Méndez, M.E., Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38 (2000) 15341553. CrossRef
Parra-Guevara, D. and Skiba, YN., Elements of the mathematical modeling in the control of pollutants emissions. Ecol. Model. 167 (2003) 263275. CrossRef
O. Pironneau, Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989).
Ramos, A.M., Glowinski, R. and Periaux, J., Nash equilibria for the multiobjetive control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457498. CrossRef
E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993).