Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:14:52.106Z Has data issue: false hasContentIssue false

Lipschitz stability in the determination of the principal part ofa parabolic equation

Published online by Cambridge University Press:  19 July 2008

Ganghua Yuan
Affiliation:
Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro, Tokyo, 153-8914, Japan. g_h_yuan@hotmail.com; myama@ms.u-tokyo.ac.jp School of Mathematics & Statistics, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.
Masahiro Yamamoto
Affiliation:
Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro, Tokyo, 153-8914, Japan. g_h_yuan@hotmail.com; myama@ms.u-tokyo.ac.jp
Get access

Abstract

Let y(h)(t,x) be one solution to \[\partial_t y(t,x) - \sum_{i, j=1}^{n}\partial_{j} (a_{ij}(x)\partial_i y(t,x))= h(t,x), \thinspace 0<t<T, \thinspace x\in \Omega\] with a non-homogeneous term h, and $y\vert_{(0,T)\times\partial\Omega} = 0$ ,where $\Omega \subset\Bbb R^n$ is a bounded domain. We discuss an inverse problemof determining n(n+1)/2 unknown functions a ij by $\{ \partial_{\nu}y(h_{\ell})\vert_{(0,T)\times \Gamma_0}$ , $y(h_{\ell})(\theta,\cdot)\}_{1\le \ell\le \ell_0}$ after selecting input sources $h_1, ...,h_{\ell_0}$ suitably, where $\Gamma_0$ is an arbitrary subboundary, $\partial_{\nu}$ denotes the normal derivative, $0 < \theta < T$ and $\ell_0 \in \Bbb N$ . In the case of $\ell_0 = (n+1)^2n/2$ , we provethe Lipschitz stability in the inverse problem if we choose $(h_1, ...,h_{\ell_0})$ from a set ${\cal H} \subset \{ C_0^{\infty}((0,T)\times \omega)\}^{\ell_0}$ with an arbitrarily fixed subdomain $\omega \subset \Omega$ . Moreover we can take $\ell_0 = (n+3)n/2$ by making special choices for $h_{\ell}$ , $1 \le \ell \le \ell_0$ . The proof is based on a Carlemanestimate.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
K.A. Ames and B. Straughan, Non-standard and Improperly Posed Problems. Academic Press, San Diego (1997).
Baudouin, L. and Puel, J.-P., Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 15371554. CrossRef
Bellassoued, M., Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Probl. 20 (2004) 10331052. CrossRef
Bellassoued, M. and Yamamoto, M., Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl. 85 (2006) 193224. CrossRef
H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).
A.L. Bukhgeim, Introduction to the Theory of Inverse Probl. VSP, Utrecht (2000).
Bukhgeim, A.L. and Klibanov, M.V., Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981) 244247.
Chae, D., Imanuvilov, O.Yu. and Kim, S.M., Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dyn. Contr. Syst. 2 (1996) 449483. CrossRef
Cheng, J. and Yamamoto, M., One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization. Inverse Probl. 16 (2000) L31L38. CrossRef
P.G. Danilaev, Coefficient Inverse Problems for Parabolic Type Equations and Their Application. VSP, Utrecht (2001).
Elayyan, A. and Isakov, V., On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation. SIAM J. Math. Anal. 28 (1997) 4959. CrossRef
Eller, M.M. and Isakov, V., Carleman estimates with two large parameters and applications. Contemp. Math. 268 (2000) 117136. CrossRef
Fabre, C., Puel, J.-P. and Zuazua, E., Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 3161. CrossRef
A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, in Lecture Notes Series 34, Seoul National University, Seoul, South Korea (1996).
D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001).
Glowinski, R. and Lions, J.L., Exact and approximate controllability for distributed parameter systems. Acta Numer. 3 (1994) 269378. CrossRef
L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963).
Imanuvilov, O.Yu., Controllability of parabolic equations. Sb. Math. 186 (1995) 879900.
Imanuvilov, O.Yu. and Yamamoto, M., Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 14 (1998) 12291245. CrossRef
Imanuvilov, O.Yu. and Yamamoto, M., Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17 (2001) 717728. CrossRef
O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, Marcel Dekker, New York (2001) 113–137.
Imanuvilov, O.Yu. and Yamamoto, M., Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19 (2003) 151171. CrossRef
Imanuvilov, O.Yu. and Yamamoto, M., Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS Kyoto Univ. 39 (2003) 227274. CrossRef
V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998), (2005).
Isakov, V. and Kindermann, S., Identification of the diffusion coefficient in a one-dimensional parabolic equation. Inverse Probl. 16 (2000) 665680. CrossRef
M. Ivanchov, Inverse Problems for Equations of Parabolic Type. VNTL Publishers, Lviv, Ukraine (2003).
Khaĭdarov, A., Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik 58 (1987) 267277. CrossRef
Klibanov, M.V., Inverse problems in the “large” and Carleman bounds. Diff. Equ. 20 (1984) 755760.
Klibanov, M.V., Inverse problems and Carleman estimates. Inverse Probl. 8 (1992) 575596. CrossRef
Klibanov, M.V., Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data. Inverse Probl. 22 (2006) 495514. CrossRef
M.V. Klibanov and A.A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2004).
Klibanov, M.V. and Yamamoto, M., Lipschitz stability of an inverse problem for an accoustic equation. Appl. Anal. 85 (2006) 515538. CrossRef
M.M. Lavrent'ev, V.G. Romanov and Shishat $\cdot$ skiĭ, Ill-posed Problems of Mathematical Physics and Analysis. American Mathematical Society Providence, Rhode Island (1986).
J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972).
L.E. Payne, Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia (1975).
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).
Saut, J.C. and Scheurer, B., Unique continuation for some evolution equations. J. Diff. Eq. 66 (1987) 118139. CrossRef
Schmidt, E.J.P.G. and Weck, N., On the boundary behavior of solutions to elliptic and parabolic equations – with applications to boundary control for parabolic equations. SIAM J. Contr. Opt. 16 (1978) 593598. CrossRef
Yamamoto, M., Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 6598. CrossRef
Yamamoto, M. and Zou, J., Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17 (2001) 11811202. CrossRef