Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Caboussat, Alexandre
2014.
Modeling, Simulation and Optimization for Science and Technology.
Vol. 34,
Issue. ,
p.
23.
Myllykoski, M.
Glowinski, R.
Kärkkäinen, T.
and
Rossi, T.
2015.
A New Augmented Lagrangian Approach for $L^1$-mean Curvature Image Denoising.
SIAM Journal on Imaging Sciences,
Vol. 8,
Issue. 1,
p.
95.
Caboussat, Alexandre
and
Glowinski, Roland
2015.
Numerical Mathematics and Advanced Applications - ENUMATH 2013.
Vol. 103,
Issue. ,
p.
143.
Prins, C. R.
Beltman, R.
ten Thije Boonkkamp, J. H. M.
IJzerman, W. L.
and
Tukker, T. W.
2015.
A Least-Squares Method for Optimal Transport Using the Monge--Ampère Equation.
SIAM Journal on Scientific Computing,
Vol. 37,
Issue. 6,
p.
B937.
Awanou, Gerard
2016.
On Standard Finite Difference Discretizations of the Elliptic Monge–Ampère Equation.
Journal of Scientific Computing,
Vol. 69,
Issue. 2,
p.
892.
Schaeffer, Hayden
and
Hou, Thomas Y.
2016.
An Accelerated Method for Nonlinear Elliptic PDE.
Journal of Scientific Computing,
Vol. 69,
Issue. 2,
p.
556.
Glowinski, Roland
2016.
Splitting Methods in Communication, Imaging, Science, and Engineering.
p.
251.
ten Thije Boonkkamp, Jan
IJzerman, Wilbert
Romijn, Lotte
Yadav, Nitin
Kidger, Tina E.
and
David, Stuart
2018.
Monge-Ampère type equations for freeform illumination optics.
p.
9.
Beltman, René
ten Thije Boonkkamp, Jan
and
IJzerman, Wilbert
2018.
A least-squares method for the inverse reflector problem in arbitrary orthogonal coordinates.
Journal of Computational Physics,
Vol. 367,
Issue. ,
p.
347.
Caboussat, Alexandre
and
Glowinski, Roland
2018.
An Alternating Direction Method of Multipliers for the Numerical Solution of a Fully Nonlinear Partial Differential Equation Involving the Jacobian Determinant.
SIAM Journal on Scientific Computing,
Vol. 40,
Issue. 1,
p.
A52.
Caboussat, Alexandre
Glowinski, Roland
and
Gourzoulidis, Dimitrios
2018.
A Least-Squares/Relaxation Method for the Numerical Solution of the Three-Dimensional Elliptic Monge–Ampère Equation.
Journal of Scientific Computing,
Vol. 77,
Issue. 1,
p.
53.
Glowinski, Roland
Liu, Hao
Leung, Shingyu
and
Qian, Jianliang
2019.
A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation.
Journal of Scientific Computing,
Vol. 79,
Issue. 1,
p.
1.
Liu, Hao
Glowinski, Roland
Leung, Shingyu
and
Qian, Jianliang
2019.
A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation.
Journal of Scientific Computing,
Vol. 81,
Issue. 3,
p.
2271.
Caboussat, Alexandre
Glowinski, Roland
Gourzoulidis, Dimitrios
and
Picasso, Marco
2019.
Numerical Approximation of Orthogonal Maps.
SIAM Journal on Scientific Computing,
Vol. 41,
Issue. 6,
p.
B1341.
Yadav, N. K.
ten Thije Boonkkamp, J. H. M.
and
IJzerman, W. L.
2019.
A Monge–Ampère Problem with Non-quadratic Cost Function to Compute Freeform Lens Surfaces.
Journal of Scientific Computing,
Vol. 80,
Issue. 1,
p.
475.
Westphal, Chad R.
2019.
A Newton Div-Curl Least-Squares Finite Element Method for the Elliptic Monge–Ampère Equation.
Computational Methods in Applied Mathematics,
Vol. 19,
Issue. 3,
p.
631.
Anthonissen, Martijn J. H.
Romijn, Lotte B.
ten Thije Boonkkamp, Jan H. M.
and
IJzerman, Wilbert L.
2021.
Unified mathematical framework for a class of fundamental freeform optical systems.
Optics Express,
Vol. 29,
Issue. 20,
p.
31650.
Brenner, Susanne C.
Sung, Li-yeng
Tan, Zhiyu
and
Zhang, Hongchao
2021.
A convexity enforcing $${C}^{{0}}$$ interior penalty method for the Monge–Ampère equation on convex polygonal domains.
Numerische Mathematik,
Vol. 148,
Issue. 3,
p.
497.
Caboussat, Alexandre
Glowinski, Roland
and
Gourzoulidis, Dimitrios
2022.
A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation.
Journal of Scientific Computing,
Vol. 93,
Issue. 1,
Lakkis, Omar
and
Mousavi, Amireh
2022.
A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations.
IMA Journal of Numerical Analysis,
Vol. 42,
Issue. 3,
p.
2151.